Annonce : Tous les projets non commerciaux enregistrés pour utiliser Earth Engine avant le 15 avril 2025 doivent vérifier leur éligibilité non commerciale pour conserver leur accès à Earth Engine.
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Prenons l'exemple de la nécessité de calculer la médiane sur une série temporelle d'images représentée par un ImageCollection. Pour réduire une ImageCollection, utilisez imageCollection.reduce(). La collection d'images est ainsi réduite à une image individuelle, comme illustré dans la figure 1. Plus précisément, la sortie est calculée par pixel, de sorte que chaque pixel de la sortie est composé de la valeur médiane de toutes les images de la collection à cet emplacement. Pour obtenir d'autres statistiques, telles que la moyenne, la somme, la variance, un percentile arbitraire, etc., le réducteur approprié doit être sélectionné et appliqué. (consultez l'onglet Documentation de l'Éditeur de code pour obtenir la liste de tous les réducteurs actuellement disponibles). Pour les statistiques de base telles que min, max, moyenne, etc.,
ImageCollection dispose de méthodes de raccourci telles que min(), max(), mean(), etc. Elles fonctionnent exactement de la même manière que l'appel de reduce(), sauf que le nom du réducteur ne sera pas ajouté aux noms de bandes résultants.
Figure 1. Illustration d'un ee.Reducer appliqué à une ImageCollection.
Pour illustrer la réduction d'une ImageCollection, prenons l'exemple d'une collection d'images Landsat 5, filtrées par chemin et ligne. Le code suivant utilise reduce() pour réduire la collection à un seul Image (ici, un réducteur de médiane est utilisé simplement à des fins d'illustration):
Cette opération renvoie un Image multibande, dont chaque pixel correspond à la médiane de tous les pixels non masqués de l'ImageCollection à cet emplacement. Plus précisément, le réducteur a été répété pour chaque bande de l'imagerie d'entrée, ce qui signifie que la médiane est calculée indépendamment dans chaque bande. Notez que le nom du réducteur est ajouté aux noms des bandes: 'B1_median', 'B2_median', etc. La sortie devrait ressembler à la figure 2.
Pour en savoir plus sur la réduction des collections d'images, consultez la section "Réduction" de la documentation ImageCollection. Notez en particulier que les images produites en réduisant un ImageCollectionn'ont aucune projection. Cela signifie que vous devez définir explicitement l'échelle sur tous les calculs impliquant la sortie d'images calculées par une réduction ImageCollection.
Figure 2. Composite en fausses couleurs de la médiane des scènes Landsat 5 en 2008.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/25 (UTC).
[null,null,["Dernière mise à jour le 2025/07/25 (UTC)."],[[["\u003cp\u003eUse \u003ccode\u003eimageCollection.reduce()\u003c/code\u003e to reduce an \u003ccode\u003eImageCollection\u003c/code\u003e to a single image by applying a reducer function pixel-wise.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine provides built-in reducers for common statistics like median, mean, min, max, and more.\u003c/p\u003e\n"],["\u003cp\u003eThe output of \u003ccode\u003ereduce()\u003c/code\u003e is a multi-band image where each pixel represents the reduced value across the input images.\u003c/p\u003e\n"],["\u003cp\u003eBand names in the output image are appended with the reducer name (e.g., \u003ccode\u003eB1_median\u003c/code\u003e).\u003c/p\u003e\n"],["\u003cp\u003eReduced images have no projection, requiring explicit scale setting for further computations.\u003c/p\u003e\n"]]],[],null,["# ImageCollection Reductions\n\nConsider the example of needing to take the median over a time series of images\nrepresented by an `ImageCollection`. To reduce an `ImageCollection`,\nuse `imageCollection.reduce()`. This reduces the collection of images to an\nindividual image as illustrated in Figure 1. Specifically, the output is computed\npixel-wise, such that each pixel in the output is composed of the median value of all the\nimages in the collection at that location. To get other statistics, such as mean, sum,\nvariance, an arbitrary percentile, etc., the appropriate reducer should be selected and\napplied. (See the **Docs** tab in the\n[Code Editor](https://code.earthengine.google.com) for a list of all the reducers\ncurrently available). For basic statistics like min, max, mean, etc.,\n`ImageCollection` has shortcut methods like `min()`,\n`max()`, `mean()`, etc. They function in exactly the same way\nas calling `reduce()`, except the resultant band names will not have the\nname of the reducer appended.\nFigure 1. Illustration of an ee.Reducer applied to an ImageCollection.\n\nFor an example of reducing an `ImageCollection`, consider a collection of\nLandsat 5 images, filtered by path and row. The following code uses `reduce()`\nto reduce the collection to one `Image` (here a median reducer is used simply\nfor illustrative purposes):\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load an image collection, filtered so it's not too much data.\nvar collection = ee.ImageCollection('LANDSAT/LT05/C02/T1')\n .filterDate('2008-01-01', '2008-12-31')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34));\n\n// Compute the median in each band, each pixel.\n// Band names are B1_median, B2_median, etc.\nvar median = collection.reduce(ee.Reducer.median());\n\n// The output is an Image. Add it to the map.\nvar vis_param = {bands: ['B4_median', 'B3_median', 'B2_median'], gamma: 1.6};\nMap.setCenter(-122.3355, 37.7924, 9);\nMap.addLayer(median, vis_param);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load an image collection, filtered so it's not too much data.\ncollection = (\n ee.ImageCollection('LANDSAT/LT05/C02/T1')\n .filterDate('2008-01-01', '2008-12-31')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n)\n\n# Compute the median in each band, each pixel.\n# Band names are B1_median, B2_median, etc.\nmedian = collection.reduce(ee.Reducer.median())\n\n# The output is an Image. Add it to the map.\nvis_param = {'bands': ['B4_median', 'B3_median', 'B2_median'], 'gamma': 1.6}\nm = geemap.Map()\nm.set_center(-122.3355, 37.7924, 9)\nm.add_layer(median, vis_param)\nm\n```\n\nThis returns a multi-band `Image`, each pixel of which is the median of all\nunmasked pixels in the `ImageCollection` at that pixel location. Specifically,\nthe reducer has been repeated for each band of the input imagery, meaning that the median\nis computed independently in each band. Note that the band names have the name of the\nreducer appended: `'B1_median'`, `'B2_median'`, etc.\nThe output should look something like Figure 2.\n\nFor more information about reducing image collections, see the\n[reducing section of the `ImageCollection` docs](/earth-engine/guides/ic_reducing). In\nparticular, note that images produced by reducing an `ImageCollection`\n[have no projection](/earth-engine/guides/ic_reducing#composites-have-no-projection). This means\nthat you should explicitly set the scale on any computations involving computed images\noutput by an `ImageCollection` reduction.\nFigure 2. A false color composite of the median of Landsat 5 scenes in 2008."]]