ee.data.getPixels (Python only)
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Tìm nạp các pixel từ một thành phần hình ảnh.
Trả về:
Các pixel dưới dạng dữ liệu hình ảnh thô.
Cách sử dụng | Giá trị trả về |
ee.data.getPixels(params) | Đối tượng|Giá trị |
Đối số | Loại | Thông tin chi tiết |
params | Đối tượng | Một đối tượng chứa các tham số có các giá trị có thể có sau đây:
assetId – Mã nhận dạng tài sản để lấy pixel. Phải là một thành phần hình ảnh.
fileFormat – Định dạng tệp kết quả. Giá trị mặc định là png. Hãy xem ImageFileFormat để biết các định dạng có sẵn. Có các định dạng bổ sung chuyển đổi đối tượng đã tải xuống thành một đối tượng dữ liệu Python. Các đối tượng này bao gồm:
NUMPY_NDARRAY , chuyển đổi thành một mảng NumPy có cấu trúc.
grid – Các tham số mô tả lưới pixel để tìm nạp dữ liệu.
Mặc định là lưới pixel gốc của dữ liệu.
region – Nếu có, vùng dữ liệu cần trả về, được chỉ định dưới dạng một đối tượng hình học GeoJSON (xem RFC 7946).
bandIds – Nếu có, hãy chỉ định một tập hợp cụ thể các dải tần để lấy pixel.
visualizationOptions – Nếu có, một tập hợp các lựa chọn trực quan hoá để áp dụng nhằm tạo ra một hình ảnh trực quan RGB 8 bit của dữ liệu, thay vì trả về dữ liệu thô. |
Ví dụ
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
cho quá trình phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Region of interest.
coords = [
-121.58626826832939,
38.059141484827485,
]
region = ee.Geometry.Point(coords)
# Get a Sentinel-2 image.
image = (ee.ImageCollection('COPERNICUS/S2')
.filterBounds(region)
.filterDate('2020-04-01', '2020-09-01')
.sort('CLOUD_COVERAGE_ASSESSMENT')
.first())
image_id = image.getInfo()['id']
# Make a projection to discover the scale in degrees.
proj = ee.Projection('EPSG:4326').atScale(10).getInfo()
# Get scales out of the transform.
scale_x = proj['transform'][0]
scale_y = -proj['transform'][4]
# Make a request object.
request = {
'assetId': image_id,
'fileFormat': 'PNG',
'bandIds': ['B4', 'B3', 'B2'],
'grid': {
'dimensions': {
'width': 640,
'height': 640
},
'affineTransform': {
'scaleX': scale_x,
'shearX': 0,
'translateX': coords[0],
'shearY': 0,
'scaleY': scale_y,
'translateY': coords[1]
},
'crsCode': proj['crs'],
},
'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},
}
image_png = ee.data.getPixels(request)
# Do something with the image...
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eee.data.getPixels\u003c/code\u003e fetches raw image data or visualized 8-bit RGB data from an Earth Engine image asset.\u003c/p\u003e\n"],["\u003cp\u003eThe function requires specifying the asset ID and allows customization of file format, pixel grid, region, bands, and visualization options.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define the output region, select specific bands for extraction, and apply visualization parameters for an RGB representation.\u003c/p\u003e\n"],["\u003cp\u003ePython examples demonstrate the usage of \u003ccode\u003eee.data.getPixels\u003c/code\u003e with the necessary parameters and retrieving image data.\u003c/p\u003e\n"]]],[],null,["# ee.data.getPixels (Python only)\n\n\u003cbr /\u003e\n\nFetches pixels from an image asset.\n\n\u003cbr /\u003e\n\nReturns:\nThe pixels as raw image data.\n\n| Usage | Returns |\n|-----------------------------|---------------|\n| `ee.data.getPixels(params)` | Object\\|Value |\n\n| Argument | Type | Details |\n|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `params` | Object | An object containing parameters with the following possible values: `assetId` - The asset ID for which to get pixels. Must be an image asset. `fileFormat` - The resulting file format. Defaults to png. See [ImageFileFormat](https://developers.google.com/earth-engine/reference/rest/v1/ImageFileFormat) for the available formats. There are additional formats that convert the downloaded object to a Python data object. These include: `NUMPY_NDARRAY`, which converts to a structured NumPy array. `grid` - Parameters describing the pixel grid in which to fetch data. Defaults to the native pixel grid of the data. `region` - If present, the region of data to return, specified as a GeoJSON geometry object (see RFC 7946). `bandIds` - If present, specifies a specific set of bands from which to get pixels. `visualizationOptions` - If present, a set of visualization options to apply to produce an 8-bit RGB visualization of the data, rather than returning the raw data. |\n\nExamples\n--------\n\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Region of interest.\ncoords = [\n -121.58626826832939,\n 38.059141484827485,\n]\nregion = ee.Geometry.Point(coords)\n\n# Get a Sentinel-2 image.\nimage = (ee.ImageCollection('COPERNICUS/S2')\n .filterBounds(region)\n .filterDate('2020-04-01', '2020-09-01')\n .sort('CLOUD_COVERAGE_ASSESSMENT')\n .first())\nimage_id = image.getInfo()['id']\n\n# Make a projection to discover the scale in degrees.\nproj = ee.Projection('EPSG:4326').atScale(10).getInfo()\n\n# Get scales out of the transform.\nscale_x = proj['transform'][0]\nscale_y = -proj['transform'][4]\n\n# Make a request object.\nrequest = {\n 'assetId': image_id,\n 'fileFormat': 'PNG',\n 'bandIds': ['B4', 'B3', 'B2'],\n 'grid': {\n 'dimensions': {\n 'width': 640,\n 'height': 640\n },\n 'affineTransform': {\n 'scaleX': scale_x,\n 'shearX': 0,\n 'translateX': coords[0],\n 'shearY': 0,\n 'scaleY': scale_y,\n 'translateY': coords[1]\n },\n 'crsCode': proj['crs'],\n },\n 'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},\n}\n\nimage_png = ee.data.getPixels(request)\n# Do something with the image...\n```"]]