Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
Penyortiran dan Pengurangan Array
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Pengurutan array berguna untuk mendapatkan mosaik kualitas kustom yang melibatkan pengurangan
subkumpulan band gambar sesuai dengan nilai dalam band yang berbeda. Contoh berikut
mengurutkan menurut NDVI, lalu mendapatkan nilai rata-rata dari subkumpulan pengamatan dalam koleksi dengan
nilai NDVI tertinggi:
Editor Kode (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images
// and adds an NDVI band.
function prepSrL8(image) {
// Develop masks for unwanted pixels (fill, cloud, cloud shadow).
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Calculate NDVI.
var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])
.rename('NDVI');
// Replace original bands with scaled bands, add NDVI band, and apply masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.addBands(ndvi)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Define an arbitrary region of interest as a point.
var roi = ee.Geometry.Point(-122.26032, 37.87187);
// Load a Landsat 8 surface reflectance collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
// Filter to get only imagery at a point of interest.
.filterBounds(roi)
// Filter to get only six months of data.
.filterDate('2021-01-01', '2021-07-01')
// Prepare images by mapping the prepSrL8 function over the collection.
.map(prepSrL8)
// Select the bands of interest to avoid taking up unneeded memory.
.select('SR_B.|NDVI');
// Convert the collection to an array.
var array = collection.toArray();
// Label of the axes.
var imageAxis = 0;
var bandAxis = 1;
// Get the NDVI slice and the bands of interest.
var bandNames = collection.first().bandNames();
var bands = array.arraySlice(bandAxis, 0, bandNames.length());
var ndvi = array.arraySlice(bandAxis, -1);
// Sort by descending NDVI.
var sorted = bands.arraySort(ndvi.multiply(-1));
// Get the highest 20% NDVI observations per pixel.
var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();
var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);
// Get the mean of the highest 20% NDVI observations by reducing
// along the image axis.
var mean = highestNdvi.arrayReduce({
reducer: ee.Reducer.mean(),
axes: [imageAxis]
});
// Turn the reduced array image into a multi-band image for display.
var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);
Map.centerObject(roi, 12);
Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images
# and adds an NDVI band.
def prep_sr_l8(image):
# Develop masks for unwanted pixels (fill, cloud, cloud shadow).
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Calculate NDVI.
ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.addBands(ndvi)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Define an arbitrary region of interest as a point.
roi = ee.Geometry.Point(-122.26032, 37.87187)
# Load a Landsat 8 surface reflectance collection.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
# Filter to get only imagery at a point of interest.
.filterBounds(roi)
# Filter to get only six months of data.
.filterDate('2021-01-01', '2021-07-01')
# Prepare images by mapping the prep_sr_l8 function over the collection.
.map(prep_sr_l8)
# Select the bands of interest to avoid taking up unneeded memory.
.select('SR_B.|NDVI')
)
# Convert the collection to an array.
array = collection.toArray()
# Label of the axes.
image_axis = 0
band_axis = 1
# Get the NDVI slice and the bands of interest.
band_names = collection.first().bandNames()
bands = array.arraySlice(band_axis, 0, band_names.length())
ndvi = array.arraySlice(band_axis, -1)
# Sort by descending NDVI.
sorted = bands.arraySort(ndvi.multiply(-1))
# Get the highest 20% NDVI observations per pixel.
num_images = sorted.arrayLength(image_axis).multiply(0.2).int()
highest_ndvi = sorted.arraySlice(image_axis, 0, num_images)
# Get the mean of the highest 20% NDVI observations by reducing
# along the image axis.
mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])
# Turn the reduced array image into a multi-band image for display.
mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])
m = geemap.Map()
m.center_object(roi, 12)
m.add_layer(
mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}
)
m
Seperti pada contoh pemodelan linear, pisahkan band yang diinginkan dari indeks pengurutan (NDVI)
menggunakan arraySlice()
di sepanjang sumbu band. Kemudian, urutkan band yang diinginkan menurut
indeks pengurutan menggunakan arraySort()
. Setelah piksel diurutkan berdasarkan
NDVI menurun, gunakan arraySlice()
di sepanjang imageAxis
untuk
mendapatkan 20% piksel NDVI tertinggi. Terakhir, terapkan arrayReduce()
di sepanjang
imageAxis
dengan pengurangan rata-rata untuk mendapatkan rata-rata piksel
NDVI tertinggi. Langkah terakhir mengonversi gambar array kembali ke gambar multi-band untuk ditampilkan.
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[[["\u003cp\u003eThis example demonstrates using array sorting to calculate the mean of the top 20% of Landsat 8 images with the highest NDVI values within a specific region and timeframe.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves preparing the Landsat 8 collection by scaling, masking, and adding an NDVI band.\u003c/p\u003e\n"],["\u003cp\u003eImage pixels are sorted based on NDVI values using \u003ccode\u003earraySort()\u003c/code\u003e, allowing selection of the highest values using \u003ccode\u003earraySlice()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003earrayReduce()\u003c/code\u003e function is applied to calculate the mean of the selected pixels, resulting in a composite image representing the desired values.\u003c/p\u003e\n"],["\u003cp\u003eThe final output is a multi-band image displaying the mean values for the selected bands (SR_B6, SR_B5, SR_B4) of the highest NDVI pixels.\u003c/p\u003e\n"]]],["The process involves sorting Landsat 8 images by NDVI to create a custom mosaic. First, a function prepares images by scaling, masking, and calculating NDVI. Then, a collection of images is filtered by location and date range, transformed into an array, and sorted by descending NDVI values. The top 20% of NDVI observations are isolated. Finally, the mean of these top observations is calculated and transformed into a multi-band image for display.\n"],null,["# Array Sorting and Reducing\n\nArray sorting is useful for obtaining custom quality mosaics which involve reducing a\nsubset of image bands according to the values in a different band. The following example\nsorts by NDVI, then gets the mean of a subset of observations in the collection with the\nhighest NDVI values:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a function that scales and masks Landsat 8 surface reflectance images\n// and adds an NDVI band.\nfunction prepSrL8(image) {\n // Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Calculate NDVI.\n var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])\n .rename('NDVI');\n\n // Replace original bands with scaled bands, add NDVI band, and apply masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .addBands(ndvi)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Define an arbitrary region of interest as a point.\nvar roi = ee.Geometry.Point(-122.26032, 37.87187);\n\n// Load a Landsat 8 surface reflectance collection.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n // Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n // Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n // Prepare images by mapping the prepSrL8 function over the collection.\n .map(prepSrL8)\n // Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI');\n\n// Convert the collection to an array.\nvar array = collection.toArray();\n\n// Label of the axes.\nvar imageAxis = 0;\nvar bandAxis = 1;\n\n// Get the NDVI slice and the bands of interest.\nvar bandNames = collection.first().bandNames();\nvar bands = array.arraySlice(bandAxis, 0, bandNames.length());\nvar ndvi = array.arraySlice(bandAxis, -1);\n\n// Sort by descending NDVI.\nvar sorted = bands.arraySort(ndvi.multiply(-1));\n\n// Get the highest 20% NDVI observations per pixel.\nvar numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();\nvar highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);\n\n// Get the mean of the highest 20% NDVI observations by reducing\n// along the image axis.\nvar mean = highestNdvi.arrayReduce({\n reducer: ee.Reducer.mean(),\n axes: [imageAxis]\n});\n\n// Turn the reduced array image into a multi-band image for display.\nvar meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);\nMap.centerObject(roi, 12);\nMap.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a function that scales and masks Landsat 8 surface reflectance images\n# and adds an NDVI band.\ndef prep_sr_l8(image):\n # Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Calculate NDVI.\n ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .addBands(ndvi)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Define an arbitrary region of interest as a point.\nroi = ee.Geometry.Point(-122.26032, 37.87187)\n\n# Load a Landsat 8 surface reflectance collection.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n # Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n # Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n # Prepare images by mapping the prep_sr_l8 function over the collection.\n .map(prep_sr_l8)\n # Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI')\n)\n\n# Convert the collection to an array.\narray = collection.toArray()\n\n# Label of the axes.\nimage_axis = 0\nband_axis = 1\n\n# Get the NDVI slice and the bands of interest.\nband_names = collection.first().bandNames()\nbands = array.arraySlice(band_axis, 0, band_names.length())\nndvi = array.arraySlice(band_axis, -1)\n\n# Sort by descending NDVI.\nsorted = bands.arraySort(ndvi.multiply(-1))\n\n# Get the highest 20% NDVI observations per pixel.\nnum_images = sorted.arrayLength(image_axis).multiply(0.2).int()\nhighest_ndvi = sorted.arraySlice(image_axis, 0, num_images)\n\n# Get the mean of the highest 20% NDVI observations by reducing\n# along the image axis.\nmean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])\n\n# Turn the reduced array image into a multi-band image for display.\nmean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])\nm = geemap.Map()\nm.center_object(roi, 12)\nm.add_layer(\n mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}\n)\nm\n```\n\nAs in the linear modeling example, separate the bands of interest from the sort index (NDVI)\nusing `arraySlice()` along the band axis. Then sort the bands of interest by\nsort index using `arraySort()`. After the pixels have been sorted by\ndescending NDVI, use `arraySlice()` along the `imageAxis` to\nget 20% of the highest NDVI pixels. Lastly, apply `arrayReduce()` along the\n`imageAxis` with a mean reducer to get the mean of the highest NDVI\npixels. The final step converts the array image back to a multi-band image for display."]]