Biến đổi mảng
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Earth Engine hỗ trợ các phép biến đổi mảng như chuyển đổi, nghịch đảo và giả nghịch đảo.
Ví dụ: hãy xem xét một hồi quy bình phương tối thiểu thông thường (OLS) của một chuỗi thời gian hình ảnh. Trong ví dụ sau, một hình ảnh có các dải cho các giá trị dự đoán và một phản hồi được chuyển đổi thành hình ảnh mảng, sau đó được "giải" để lấy các giá trị ước tính hệ số bình phương nhỏ nhất theo ba cách. Trước tiên, hãy tập hợp dữ liệu hình ảnh và chuyển đổi thành mảng:
Trình soạn thảo mã (JavaScript)
// Scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
// Develop masks for unwanted pixels (fill, cloud, cloud shadow).
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Load a Landsat 8 surface reflectance image collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
// Filter to get only two years of data.
.filterDate('2019-04-01', '2021-04-01')
// Filter to get only imagery at a point of interest.
.filterBounds(ee.Geometry.Point(-122.08709, 36.9732))
// Prepare images by mapping the prepSrL8 function over the collection.
.map(prepSrL8)
// Select NIR and red bands only.
.select(['SR_B5', 'SR_B4'])
// Sort the collection in chronological order.
.sort('system:time_start', true);
// This function computes the predictors and the response from the input.
var makeVariables = function(image) {
// Compute time of the image in fractional years relative to the Epoch.
var year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year'));
// Compute the season in radians, one cycle per year.
var season = year.multiply(2 * Math.PI);
// Return an image of the predictors followed by the response.
return image.select()
.addBands(ee.Image(1)) // 0. constant
.addBands(year.rename('t')) // 1. linear trend
.addBands(season.sin().rename('sin')) // 2. seasonal
.addBands(season.cos().rename('cos')) // 3. seasonal
.addBands(image.normalizedDifference().rename('NDVI')) // 4. response
.toFloat();
};
// Define the axes of variation in the collection array.
var imageAxis = 0;
var bandAxis = 1;
// Convert the collection to an array.
var array = collection.map(makeVariables).toArray();
// Check the length of the image axis (number of images).
var arrayLength = array.arrayLength(imageAxis);
// Update the mask to ensure that the number of images is greater than or
// equal to the number of predictors (the linear model is solvable).
array = array.updateMask(arrayLength.gt(4));
// Get slices of the array according to positions along the band axis.
var predictors = array.arraySlice(bandAxis, 0, 4);
var response = array.arraySlice(bandAxis, 4);
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
import math
# Scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
# Develop masks for unwanted pixels (fill, cloud, cloud shadow).
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Load a Landsat 8 surface reflectance image collection.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
# Filter to get only two years of data.
.filterDate('2019-04-01', '2021-04-01')
# Filter to get only imagery at a point of interest.
.filterBounds(ee.Geometry.Point(-122.08709, 36.9732))
# Prepare images by mapping the prep_sr_l8 function over the collection.
.map(prep_sr_l8)
# Select NIR and red bands only.
.select(['SR_B5', 'SR_B4'])
# Sort the collection in chronological order.
.sort('system:time_start', True)
)
# This function computes the predictors and the response from the input.
def make_variables(image):
# Compute time of the image in fractional years relative to the Epoch.
year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year'))
# Compute the season in radians, one cycle per year.
season = year.multiply(2 * math.pi)
# Return an image of the predictors followed by the response.
return (
image.select()
.addBands(ee.Image(1)) # 0. constant
.addBands(year.rename('t')) # 1. linear trend
.addBands(season.sin().rename('sin')) # 2. seasonal
.addBands(season.cos().rename('cos')) # 3. seasonal
.addBands(image.normalizedDifference().rename('NDVI')) # 4. response
.toFloat()
)
# Define the axes of variation in the collection array.
image_axis = 0
band_axis = 1
# Convert the collection to an array.
array = collection.map(make_variables).toArray()
# Check the length of the image axis (number of images).
array_length = array.arrayLength(image_axis)
# Update the mask to ensure that the number of images is greater than or
# equal to the number of predictors (the linear model is solvable).
array = array.updateMask(array_length.gt(4))
# Get slices of the array according to positions along the band axis.
predictors = array.arraySlice(band_axis, 0, 4)
response = array.arraySlice(band_axis, 4)
Xin lưu ý rằng arraySlice()
trả về tất cả hình ảnh trong chuỗi thời gian cho phạm vi chỉ mục được chỉ định dọc theo bandAxis
(trục 1). Tại thời điểm này, bạn có thể sử dụng đại số ma trận để giải phương trình cho các hệ số OLS:
Trình soạn thảo mã (JavaScript)
// Compute coefficients the hard way.
var coefficients1 = predictors.arrayTranspose().matrixMultiply(predictors)
.matrixInverse().matrixMultiply(predictors.arrayTranspose())
.matrixMultiply(response);
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Compute coefficients the hard way.
coefficients_1 = (
predictors.arrayTranspose()
.matrixMultiply(predictors)
.matrixInverse()
.matrixMultiply(predictors.arrayTranspose())
.matrixMultiply(response)
)
Mặc dù phương thức này hoạt động, nhưng không hiệu quả và khiến mã khó đọc. Bạn nên sử dụng phương thức pseudoInverse()
(matrixPseudoInverse()
cho hình ảnh mảng):
Trình soạn thảo mã (JavaScript)
// Compute coefficients the easy way.
var coefficients2 = predictors.matrixPseudoInverse()
.matrixMultiply(response);
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Compute coefficients the easy way.
coefficients_2 = predictors.matrixPseudoInverse().matrixMultiply(response)
Từ góc độ dễ đọc và hiệu quả tính toán, cách tốt nhất để lấy hệ số OLS là solve()
(matrixSolve()
đối với hình ảnh mảng). Hàm solve()
xác định cách giải hệ thống tốt nhất từ các đặc điểm của dữ liệu đầu vào, sử dụng phép nghịch đảo giả cho các hệ thống quá xác định, phép nghịch đảo cho các ma trận vuông và các kỹ thuật đặc biệt cho các ma trận gần như đơn nhất:
Trình soạn thảo mã (JavaScript)
// Compute coefficients the easiest way.
var coefficients3 = predictors.matrixSolve(response);
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Compute coefficients the easiest way.
coefficients_3 = predictors.matrixSolve(response)
Để có hình ảnh nhiều băng tần, hãy chiếu hình ảnh mảng vào không gian có kích thước thấp hơn, sau đó làm phẳng hình ảnh đó:
Trình soạn thảo mã (JavaScript)
// Turn the results into a multi-band image.
var coefficientsImage = coefficients3
// Get rid of the extra dimensions.
.arrayProject([0])
.arrayFlatten([
['constant', 'trend', 'sin', 'cos']
]);
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Turn the results into a multi-band image.
coefficients_image = (
coefficients_3
# Get rid of the extra dimensions.
.arrayProject([0]).arrayFlatten([['constant', 'trend', 'sin', 'cos']])
)
Kiểm tra kết quả của ba phương thức và quan sát thấy rằng ma trận kết quả của các hệ số là giống nhau bất kể phương thức giải. solve()
linh hoạt và hiệu quả nên là lựa chọn phù hợp cho việc lập mô hình tuyến tính cho mục đích chung.
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[[["\u003cp\u003eEarth Engine enables array transformations like transpose, inverse, and pseudo-inverse for advanced analysis, such as ordinary least squares (OLS) regression on image time series.\u003c/p\u003e\n"],["\u003cp\u003eUsers can convert image collections to arrays, extract predictors and responses, and apply matrix operations to derive regression coefficients.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine offers multiple methods for solving linear systems, with \u003ccode\u003esolve()\u003c/code\u003e being the most efficient and adaptable for various scenarios, including overdetermined systems and nearly singular matrices.\u003c/p\u003e\n"],["\u003cp\u003eArray images resulting from calculations can be transformed back into multi-band images for visualization and further analysis.\u003c/p\u003e\n"]]],["The content demonstrates ordinary least squares (OLS) regression on a Landsat 8 image time series using Earth Engine. Key actions include preparing images by masking and scaling, creating predictor and response variables (constant, trend, seasonal, and NDVI), and converting the collection to an array. OLS coefficients are then calculated using three methods: direct matrix operations, pseudo-inverse, and the `matrixSolve()` function. Finally, the coefficient array is projected and flattened into a multi-band image. `matrixSolve()` is highlighted as the most efficient and flexible method.\n"],null,["# Array Transformations\n\nEarth Engine supports array transformations such as transpose, inverse and pseudo-inverse.\nAs an example, consider an ordinary least squares (OLS) regression of a time series of\nimages. In the following example, an image with bands for predictors and a response is\nconverted to an array image, then \"solved\" to obtain least squares coefficients estimates\nthree ways. First, assemble the image data and convert to arrays:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Scales and masks Landsat 8 surface reflectance images.\nfunction prepSrL8(image) {\n // Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Replace the original bands with the scaled ones and apply the masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Load a Landsat 8 surface reflectance image collection.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n // Filter to get only two years of data.\n .filterDate('2019-04-01', '2021-04-01')\n // Filter to get only imagery at a point of interest.\n .filterBounds(ee.Geometry.Point(-122.08709, 36.9732))\n // Prepare images by mapping the prepSrL8 function over the collection.\n .map(prepSrL8)\n // Select NIR and red bands only.\n .select(['SR_B5', 'SR_B4'])\n // Sort the collection in chronological order.\n .sort('system:time_start', true);\n\n// This function computes the predictors and the response from the input.\nvar makeVariables = function(image) {\n // Compute time of the image in fractional years relative to the Epoch.\n var year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year'));\n // Compute the season in radians, one cycle per year.\n var season = year.multiply(2 * Math.PI);\n // Return an image of the predictors followed by the response.\n return image.select()\n .addBands(ee.Image(1)) // 0. constant\n .addBands(year.rename('t')) // 1. linear trend\n .addBands(season.sin().rename('sin')) // 2. seasonal\n .addBands(season.cos().rename('cos')) // 3. seasonal\n .addBands(image.normalizedDifference().rename('NDVI')) // 4. response\n .toFloat();\n};\n\n// Define the axes of variation in the collection array.\nvar imageAxis = 0;\nvar bandAxis = 1;\n\n// Convert the collection to an array.\nvar array = collection.map(makeVariables).toArray();\n\n// Check the length of the image axis (number of images).\nvar arrayLength = array.arrayLength(imageAxis);\n// Update the mask to ensure that the number of images is greater than or\n// equal to the number of predictors (the linear model is solvable).\narray = array.updateMask(arrayLength.gt(4));\n\n// Get slices of the array according to positions along the band axis.\nvar predictors = array.arraySlice(bandAxis, 0, 4);\nvar response = array.arraySlice(bandAxis, 4);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nimport math\n\n\n# Scales and masks Landsat 8 surface reflectance images.\ndef prep_sr_l8(image):\n # Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Load a Landsat 8 surface reflectance image collection.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n # Filter to get only two years of data.\n .filterDate('2019-04-01', '2021-04-01')\n # Filter to get only imagery at a point of interest.\n .filterBounds(ee.Geometry.Point(-122.08709, 36.9732))\n # Prepare images by mapping the prep_sr_l8 function over the collection.\n .map(prep_sr_l8)\n # Select NIR and red bands only.\n .select(['SR_B5', 'SR_B4'])\n # Sort the collection in chronological order.\n .sort('system:time_start', True)\n)\n\n\n# This function computes the predictors and the response from the input.\ndef make_variables(image):\n # Compute time of the image in fractional years relative to the Epoch.\n year = ee.Image(image.date().difference(ee.Date('1970-01-01'), 'year'))\n # Compute the season in radians, one cycle per year.\n season = year.multiply(2 * math.pi)\n # Return an image of the predictors followed by the response.\n return (\n image.select()\n .addBands(ee.Image(1)) # 0. constant\n .addBands(year.rename('t')) # 1. linear trend\n .addBands(season.sin().rename('sin')) # 2. seasonal\n .addBands(season.cos().rename('cos')) # 3. seasonal\n .addBands(image.normalizedDifference().rename('NDVI')) # 4. response\n .toFloat()\n )\n\n\n# Define the axes of variation in the collection array.\nimage_axis = 0\nband_axis = 1\n\n# Convert the collection to an array.\narray = collection.map(make_variables).toArray()\n\n# Check the length of the image axis (number of images).\narray_length = array.arrayLength(image_axis)\n# Update the mask to ensure that the number of images is greater than or\n# equal to the number of predictors (the linear model is solvable).\narray = array.updateMask(array_length.gt(4))\n\n# Get slices of the array according to positions along the band axis.\npredictors = array.arraySlice(band_axis, 0, 4)\nresponse = array.arraySlice(band_axis, 4)\n```\n\nNote that `arraySlice()` returns all the images in the time series for the\nrange of indices specified along the `bandAxis` (the 1-axis). At this point,\nmatrix algebra can be used to solve for the OLS coefficients:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Compute coefficients the hard way.\nvar coefficients1 = predictors.arrayTranspose().matrixMultiply(predictors)\n .matrixInverse().matrixMultiply(predictors.arrayTranspose())\n .matrixMultiply(response);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Compute coefficients the hard way.\ncoefficients_1 = (\n predictors.arrayTranspose()\n .matrixMultiply(predictors)\n .matrixInverse()\n .matrixMultiply(predictors.arrayTranspose())\n .matrixMultiply(response)\n)\n```\n\nAlthough this method works, it is inefficient and makes for difficult to read code. A\nbetter way is to use the `pseudoInverse()` method\n(`matrixPseudoInverse()` for an array image):\n\n### Code Editor (JavaScript)\n\n```javascript\n// Compute coefficients the easy way.\nvar coefficients2 = predictors.matrixPseudoInverse()\n .matrixMultiply(response);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Compute coefficients the easy way.\ncoefficients_2 = predictors.matrixPseudoInverse().matrixMultiply(response)\n```\n\nFrom a readability and computational efficiency perspective, the best way to get the OLS\ncoefficients is `solve()` (`matrixSolve()` for an array image). The\n`solve()` function determines how to best solve the system from characteristics\nof the inputs, using the pseudo-inverse for overdetermined systems, the inverse for square\nmatrices and special techniques for nearly singular matrices:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Compute coefficients the easiest way.\nvar coefficients3 = predictors.matrixSolve(response);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Compute coefficients the easiest way.\ncoefficients_3 = predictors.matrixSolve(response)\n```\n\nTo get a multi-band image, project the array image into a lower dimensional space, then\nflatten it:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Turn the results into a multi-band image.\nvar coefficientsImage = coefficients3\n // Get rid of the extra dimensions.\n .arrayProject([0])\n .arrayFlatten([\n ['constant', 'trend', 'sin', 'cos']\n]);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Turn the results into a multi-band image.\ncoefficients_image = (\n coefficients_3\n # Get rid of the extra dimensions.\n .arrayProject([0]).arrayFlatten([['constant', 'trend', 'sin', 'cos']])\n)\n```\n\nExamine the outputs of the three methods and observe that the resultant matrix of\ncoefficients is the same regardless of the solver. That `solve()` is flexible\nand efficient makes it a good choice for general purpose linear modeling."]]