ImageCollection – Übersicht
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Ein ImageCollection
ist ein Stapel oder eine Sequenz von Bildern.
Aus einer Sammlungs-ID erstellen
Eine ImageCollection
kann geladen werden, indem eine Earth Engine-Asset-ID in den ImageCollection
-Konstruktor eingefügt wird. ImageCollection
-IDs finden Sie im Data Catalog. So laden Sie beispielsweise die Sentinel-2-Sammlung für die Oberflächenreflexion:
Code-Editor (JavaScript)
var sentinelCollection = ee.ImageCollection('COPERNICUS/S2_SR');
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
sentinel_collection = ee.ImageCollection('COPERNICUS/S2_SR')
Diese Sammlung enthält alle Sentinel-2-Bilder im öffentlichen Katalog.
Es gibt viele. Normalerweise sollten Sie die Sammlung wie hier oder hier filtern.
Aus einer Bildliste erstellen
Mit dem Konstruktor ee.ImageCollection()
oder der praktischen Methode ee.ImageCollection.fromImages()
können Sie Bildsammlungen aus Listen mit Bildern erstellen. Sie können auch neue Bildersammlungen erstellen, indem Sie vorhandene Sammlungen zusammenführen. Beispiel:
Code-Editor (JavaScript)
// Create arbitrary constant images.
var constant1 = ee.Image(1);
var constant2 = ee.Image(2);
// Create a collection by giving a list to the constructor.
var collectionFromConstructor = ee.ImageCollection([constant1, constant2]);
print('collectionFromConstructor: ', collectionFromConstructor);
// Create a collection with fromImages().
var collectionFromImages = ee.ImageCollection.fromImages(
[ee.Image(3), ee.Image(4)]);
print('collectionFromImages: ', collectionFromImages);
// Merge two collections.
var mergedCollection = collectionFromConstructor.merge(collectionFromImages);
print('mergedCollection: ', mergedCollection);
// Create a toy FeatureCollection
var features = ee.FeatureCollection(
[ee.Feature(null, {foo: 1}), ee.Feature(null, {foo: 2})]);
// Create an ImageCollection from the FeatureCollection
// by mapping a function over the FeatureCollection.
var images = features.map(function(feature) {
return ee.Image(ee.Number(feature.get('foo')));
});
// Print the resultant collection.
print('Image collection: ', images);
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
# Create arbitrary constant images.
constant_1 = ee.Image(1)
constant_2 = ee.Image(2)
# Create a collection by giving a list to the constructor.
collection_from_constructor = ee.ImageCollection([constant_1, constant_2])
display('Collection from constructor:', collection_from_constructor)
# Create a collection with fromImages().
collection_from_images = ee.ImageCollection.fromImages(
[ee.Image(3), ee.Image(4)]
)
display('Collection from images:', collection_from_images)
# Merge two collections.
merged_collection = collection_from_constructor.merge(collection_from_images)
display('Merged collection:', merged_collection)
# Create a toy FeatureCollection
features = ee.FeatureCollection(
[ee.Feature(None, {'foo': 1}), ee.Feature(None, {'foo': 2})]
)
# Create an ImageCollection from the FeatureCollection
# by mapping a function over the FeatureCollection.
images = features.map(lambda feature: ee.Image(ee.Number(feature.get('foo'))))
# Display the resultant collection.
display('Image collection:', images)
In diesem Beispiel wird eine ImageCollection
erstellt, indem eine Funktion, die eine Image
zurückgibt, auf eine FeatureCollection
angewendet wird. Weitere Informationen zur Kartierung finden Sie im Abschnitt Kartierung über eine ImageCollection. Weitere Informationen zu Feature-Sammlungen finden Sie im Abschnitt FeatureCollection.
Aus einer COG-Liste erstellen
ImageCollection
aus GeoTiffs in Cloud Storage erstellen
Beispiel:
Code-Editor (JavaScript)
// All the GeoTiffs are in this folder.
var uriBase = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +
'LC08_L1GT_001002_20160817_20170322_01_T2/';
// List of URIs, one for each band.
var uris = ee.List([
uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',
uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',
uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',
uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',
]);
// Make a collection from the list of images.
var images = uris.map(ee.Image.loadGeoTIFF);
var collection = ee.ImageCollection(images);
// Get an RGB image from the collection of bands.
var rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']);
Map.centerObject(rgb);
Map.addLayer(rgb, {bands: ['B4', 'B3', 'B2'], min: 0, max: 20000}, 'rgb');
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
# All the GeoTiffs are in this folder.
uri_base = (
'gs://gcp-public-data-landsat/LC08/01/001/002/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2/'
)
# List of URIs, one for each band.
uris = ee.List([
uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',
uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',
uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',
uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',
])
# Make a collection from the list of images.
images = uris.map(lambda uri: ee.Image.loadGeoTIFF(uri))
collection = ee.ImageCollection(images)
# Get an RGB image from the collection of bands.
rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5'])
m = geemap.Map()
m.center_object(rgb)
m.add_layer(rgb, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 20000}, 'rgb')
m
Weitere Informationen zum Laden von Bildern aus Cloud-GeoTIFFs
Aus einem Zarr v2-Array erstellen
Erstellen Sie eine ImageCollection
aus einem Zarr v2-Array in Cloud Storage, indem Sie Bildschnitte entlang einer höheren Dimension erstellen.
Beispiel:
Code-Editor (JavaScript)
var timeStart = 1000000;
var timeEnd = 1000048;
var zarrV2ArrayImages = ee.ImageCollection.loadZarrV2Array({
uri:
'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj: 'EPSG:4326',
axis: 0,
starts: [timeStart],
ends: [timeEnd]
});
print(zarrV2ArrayImages);
Map.addLayer(zarrV2ArrayImages, {min: -0.0001, max: 0.00005}, 'Evaporation');
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
time_start = 1000000
time_end = 1000048
zarr_v2_array_images = ee.ImageCollection.loadZarrV2Array(
uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj='EPSG:4326',
axis=0,
starts=[time_start],
ends=[time_end],
)
display(zarr_v2_array_images)
m = geemap.Map()
m.add_layer(
zarr_v2_array_images, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'
)
m
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-25 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-25 (UTC)."],[[["\u003cp\u003eAn \u003ccode\u003eImageCollection\u003c/code\u003e in Earth Engine represents a sequence of images and can be loaded using an Earth Engine asset ID from the data catalog.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImageCollection\u003c/code\u003es can be created using various methods, including \u003ccode\u003eee.ImageCollection()\u003c/code\u003e, \u003ccode\u003eee.ImageCollection.fromImages()\u003c/code\u003e, merging existing collections, or by mapping a function over a \u003ccode\u003eFeatureCollection\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eUsers often filter large \u003ccode\u003eImageCollection\u003c/code\u003es, such as the Sentinel-2 surface reflectance collection, to focus on specific images of interest.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine allows creating \u003ccode\u003eImageCollection\u003c/code\u003es from GeoTIFFs stored in Cloud Storage by mapping \u003ccode\u003eee.Image.loadGeoTIFF\u003c/code\u003e over a list of URIs.\u003c/p\u003e\n"]]],["`ImageCollection` can be loaded using Earth Engine asset IDs, like 'COPERNICUS/S2_SR'. Collections can be created using `ee.ImageCollection()` or `ee.ImageCollection.fromImages()`, which take lists of images. Existing collections can be merged with the `merge()` method. `ImageCollection`s are also created by mapping a function over a `FeatureCollection` that returns an `Image`. Images can also be imported from GeoTIFF files in Cloud Storage, mapped and then put into an `ImageCollection`.\n"],null,["# ImageCollection Overview\n\nAn `ImageCollection` is a stack or sequence of images.\n\nConstruct from a collection ID\n------------------------------\n\nAn `ImageCollection` can be loaded by pasting an Earth Engine\nasset ID into the\n`ImageCollection` constructor. You can find\n`ImageCollection` IDs in the [data catalog](/earth-engine/datasets). For example, to load the\n[Sentinel-2 surface reflectance\ncollection](/earth-engine/guides/datasets/catalog/COPERNICUS_S2_SR):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar sentinelCollection = ee.ImageCollection('COPERNICUS/S2_SR');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nsentinel_collection = ee.ImageCollection('COPERNICUS/S2_SR')\n```\n\nThis collection contains every Sentinel-2 image in the public catalog.\nThere are a lot. Usually you want to filter the collection as shown [here](/earth-engine/guides/ic_info) or\n[here](/earth-engine/guides/ic_filtering).\n\nConstruct from an image list\n----------------------------\n\nThe constructor\n`ee.ImageCollection()` or the convenience method\n`ee.ImageCollection.fromImages()` create image collections from\nlists of images. You can also create new image collections by merging\nexisting collections. For example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create arbitrary constant images.\nvar constant1 = ee.Image(1);\nvar constant2 = ee.Image(2);\n\n// Create a collection by giving a list to the constructor.\nvar collectionFromConstructor = ee.ImageCollection([constant1, constant2]);\nprint('collectionFromConstructor: ', collectionFromConstructor);\n\n// Create a collection with fromImages().\nvar collectionFromImages = ee.ImageCollection.fromImages(\n [ee.Image(3), ee.Image(4)]);\nprint('collectionFromImages: ', collectionFromImages);\n\n// Merge two collections.\nvar mergedCollection = collectionFromConstructor.merge(collectionFromImages);\nprint('mergedCollection: ', mergedCollection);\n\n// Create a toy FeatureCollection\nvar features = ee.FeatureCollection(\n [ee.Feature(null, {foo: 1}), ee.Feature(null, {foo: 2})]);\n\n// Create an ImageCollection from the FeatureCollection\n// by mapping a function over the FeatureCollection.\nvar images = features.map(function(feature) {\n return ee.Image(ee.Number(feature.get('foo')));\n});\n\n// Print the resultant collection.\nprint('Image collection: ', images);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create arbitrary constant images.\nconstant_1 = ee.Image(1)\nconstant_2 = ee.Image(2)\n\n# Create a collection by giving a list to the constructor.\ncollection_from_constructor = ee.ImageCollection([constant_1, constant_2])\ndisplay('Collection from constructor:', collection_from_constructor)\n\n# Create a collection with fromImages().\ncollection_from_images = ee.ImageCollection.fromImages(\n [ee.Image(3), ee.Image(4)]\n)\ndisplay('Collection from images:', collection_from_images)\n\n# Merge two collections.\nmerged_collection = collection_from_constructor.merge(collection_from_images)\ndisplay('Merged collection:', merged_collection)\n\n# Create a toy FeatureCollection\nfeatures = ee.FeatureCollection(\n [ee.Feature(None, {'foo': 1}), ee.Feature(None, {'foo': 2})]\n)\n\n# Create an ImageCollection from the FeatureCollection\n# by mapping a function over the FeatureCollection.\nimages = features.map(lambda feature: ee.Image(ee.Number(feature.get('foo'))))\n\n# Display the resultant collection.\ndisplay('Image collection:', images)\n```\n\nNote that in this example an `ImageCollection` is created by\nmapping a function that returns an `Image` over a\n`FeatureCollection`. Learn more about mapping in the [Mapping over an ImageCollection section](/earth-engine/guides/ic_mapping). Learn\nmore about feature collections from the\n[FeatureCollection section](/earth-engine/guides/feature_collections).\n\nConstruct from a COG list\n-------------------------\n\nCreate an `ImageCollection` from GeoTiffs in Cloud Storage.\nFor example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// All the GeoTiffs are in this folder.\nvar uriBase = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2/';\n\n// List of URIs, one for each band.\nvar uris = ee.List([\n uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',\n uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',\n uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',\n uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',\n]);\n\n// Make a collection from the list of images.\nvar images = uris.map(ee.Image.loadGeoTIFF);\nvar collection = ee.ImageCollection(images);\n\n// Get an RGB image from the collection of bands.\nvar rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']);\nMap.centerObject(rgb);\nMap.addLayer(rgb, {bands: ['B4', 'B3', 'B2'], min: 0, max: 20000}, 'rgb');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# All the GeoTiffs are in this folder.\nuri_base = (\n 'gs://gcp-public-data-landsat/LC08/01/001/002/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2/'\n)\n\n# List of URIs, one for each band.\nuris = ee.List([\n uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',\n uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',\n uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',\n uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',\n])\n\n# Make a collection from the list of images.\nimages = uris.map(lambda uri: ee.Image.loadGeoTIFF(uri))\ncollection = ee.ImageCollection(images)\n\n# Get an RGB image from the collection of bands.\nrgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5'])\nm = geemap.Map()\nm.center_object(rgb)\nm.add_layer(rgb, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 20000}, 'rgb')\nm\n```\n\n[Learn more about\nloading images from Cloud GeoTiffs](/earth-engine/guides/image_overview#images-from-cloud-geotiffs).\n\nConstruct from a Zarr v2 array\n------------------------------\n\nCreate an `ImageCollection` from a Zarr\nv2 array in Cloud Storage by taking image slices along a higher dimension.\nFor example:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar timeStart = 1000000;\nvar timeEnd = 1000048;\nvar zarrV2ArrayImages = ee.ImageCollection.loadZarrV2Array({\n uri:\n 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj: 'EPSG:4326',\n axis: 0,\n starts: [timeStart],\n ends: [timeEnd]\n});\n\nprint(zarrV2ArrayImages);\n\nMap.addLayer(zarrV2ArrayImages, {min: -0.0001, max: 0.00005}, 'Evaporation');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ntime_start = 1000000\ntime_end = 1000048\nzarr_v2_array_images = ee.ImageCollection.loadZarrV2Array(\n uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj='EPSG:4326',\n axis=0,\n starts=[time_start],\n ends=[time_end],\n)\n\ndisplay(zarr_v2_array_images)\n\nm = geemap.Map()\nm.add_layer(\n zarr_v2_array_images, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'\n)\nm\n```"]]