إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
تقليل ImageCollection
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
لتركيب الصور في ImageCollection
، استخدِم
imageCollection.reduce()
. سيؤدي ذلك إلى دمج جميع الصور في
المجموعة في صورة واحدة تمثّل، على سبيل المثال، الحد الأدنى أو الحد الأقصى أو المتوسط أو الانحراف المعياري
للصور.
(اطّلِع على قسم "العوامل المُختزلة"
للحصول على مزيد من المعلومات عن عوامل الاختزال). على سبيل المثال، لإنشاء صورة لقيمة متوسطة من مجموعة
ما:
محرِّر الرموز البرمجية (JavaScript)
// Load a Landsat 8 collection for a single path-row.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01');
// Compute a median image and display.
var median = collection.median();
Map.setCenter(-122.3578, 37.7726, 12);
Map.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');
إعداد لغة Python
اطّلِع على صفحة
بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE
geemap
لتطوير التطبيقات التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 collection for a single path-row.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01')
)
# Compute a median image and display.
median = collection.median()
m = geemap.Map()
m.set_center(-122.3578, 37.7726, 12)
m.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')
m
في كل موقع في الصورة الناتجة، وفي كل نطاق، تكون قيمة البكسل هي المتوسط لجميع
البكسلات غير المحجوبة في صور الإدخال (الصور في المجموعة). في المثال السابق
، median()
هي طريقة مساعدة للاستدعاء التالي:
محرِّر الرموز البرمجية (JavaScript)
// Reduce the collection with a median reducer.
var median = collection.reduce(ee.Reducer.median());
// Display the median image.
Map.addLayer(median,
{bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},
'Also median');
إعداد لغة Python
اطّلِع على صفحة
بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE
geemap
لتطوير التطبيقات التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# Reduce the collection with a median reducer.
median = collection.reduce(ee.Reducer.median())
# Display the median image.
m.add_layer(
median,
{'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},
'Also median',
)
m
يُرجى العلم أنّ أسماء النطاقات تختلف نتيجة استخدام reduce()
بدلاً من
طريقة تسهيل الاستخدام. على وجه التحديد، تم إلحاق أسماء المُخفِّض بأسماء
النطاقات.
من الممكن أيضًا إجراء عمليات تقليل أكثر تعقيدًا باستخدام reduce()
. على سبيل المثال، لحساب الاتجاه الخطي على المدى الطويل على مستوى مجموعة، استخدِم أحد أدوات تقليل الانحدار الخطي. تحسب التعليمة البرمجية التالية المؤشر الخطي لمؤشر MODIS Enhanced
Vegetation Index (EVI):
محرِّر الرموز البرمجية (JavaScript)
// This function adds a band representing the image timestamp.
var addTime = function(image) {
return image.addBands(image.metadata('system:time_start')
// Convert milliseconds from epoch to years to aid in
// interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365));
};
// Load a MODIS collection, filter to several years of 16 day mosaics,
// and map the time band function over it.
var collection = ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(addTime);
// Select the bands to model with the independent variable first.
var trend = collection.select(['system:time_start', 'EVI'])
// Compute the linear trend over time.
.reduce(ee.Reducer.linearFit());
// Display the trend with increasing slopes in green, decreasing in red.
Map.setCenter(-96.943, 39.436, 5);
Map.addLayer(
trend,
{min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},
'EVI trend');
إعداد لغة Python
اطّلِع على صفحة
بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE
geemap
لتطوير التطبيقات التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# This function adds a band representing the image timestamp.
def add_time(image):
return image.addBands(
image.metadata('system:time_start')
# Convert milliseconds from epoch to years to aid in
# interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365)
)
# Load a MODIS collection, filter to several years of 16 day mosaics,
# and map the time band function over it.
collection = (
ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(add_time)
)
# Select the bands to model with the independent variable first.
trend = collection.select(['system:time_start', 'EVI']).reduce(
# Compute the linear trend over time.
ee.Reducer.linearFit()
)
# Display the trend with increasing slopes in green, decreasing in red.
m.set_center(-96.943, 39.436, 5)
m = geemap.Map()
m.add_layer(
trend,
{
'min': 0,
'max': [-100, 100, 10000],
'bands': ['scale', 'scale', 'offset'],
},
'EVI trend',
)
m
يُرجى العِلم أنّ نتيجة عملية التقليل في هذا المثال هي صورة مؤلفة من شريطَين
يتضمّن أحدهما منحدر الانحدار الخطي (scale
) والآخر
قيمة القطع (offset
). يمكنك تصفُّح مستندات واجهة برمجة التطبيقات للاطّلاع على قائمة
بأدوات التقليل المتاحة لتقليل ImageCollection
إلى
Image
واحد.
لا تتضمّن التصاميم المركّبة أيّ إسقاط.
إنّ الصور المركبة التي يتم إنشاؤها من خلال تصغير مجموعة صور يمكنها إنتاج بكسل
في أي إسقاط مطلوب، وبالتالي لا يكون لها إسقاط ثابت للإخراج.
بدلاً من ذلك، تتضمّن التصاميم المجمّعة
إسقاط WGS-84 الافتراضى بدقة بكسل درجة واحدة. سيتم احتساب العناصر المركبة التي تستخدم الإسقاط التلقائي
بأي إسقاط ناتج مطلوب. يحدث الطلب
من خلال عرض العنصر المركب في "محرر الرموز" (تعرَّف على كيفية تحديد "محرر الرموز"
لمقياس والإسقاط)، أو من خلال تحديد
إسقاط/مقياس بشكل صريح كما هو الحال في التجميع مثل
ReduceRegion
أو Export
.
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eUse \u003ccode\u003eimageCollection.reduce()\u003c/code\u003e to composite images in an \u003ccode\u003eImageCollection\u003c/code\u003e into a single image representing a statistical summary (e.g., median, mean) of the collection.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003ereduce()\u003c/code\u003e function utilizes reducers like \u003ccode\u003eee.Reducer.median()\u003c/code\u003e to calculate the desired composite, with band names reflecting the reducer used.\u003c/p\u003e\n"],["\u003cp\u003eMore complex reductions, such as calculating linear trends, are possible using specific reducers like \u003ccode\u003eee.Reducer.linearFit()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eComposite images generated from reducing an image collection do not have a fixed projection and will be computed based on the requested output projection.\u003c/p\u003e\n"]]],[],null,["# Reducing an ImageCollection\n\nTo composite images in an `ImageCollection`, use\n`imageCollection.reduce()`. This will composite all the images in the\ncollection to a single image representing, for example, the min, max, mean or standard\ndeviation of the images.\n(See the [Reducers section](/earth-engine/guides/reducers_image_collection)\nfor more information about reducers). For example, to create a median value image from a\ncollection:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 collection for a single path-row.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01');\n\n// Compute a median image and display.\nvar median = collection.median();\nMap.setCenter(-122.3578, 37.7726, 12);\nMap.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 collection for a single path-row.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01')\n)\n\n# Compute a median image and display.\nmedian = collection.median()\nm = geemap.Map()\nm.set_center(-122.3578, 37.7726, 12)\nm.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')\nm\n```\n\nAt each location in the output image, in each band, the pixel value is the median of all\nunmasked pixels in the input imagery (the images in the collection). In the previous\nexample, `median()` is a convenience method for the following call:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Reduce the collection with a median reducer.\nvar median = collection.reduce(ee.Reducer.median());\n\n// Display the median image.\nMap.addLayer(median,\n {bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},\n 'Also median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Reduce the collection with a median reducer.\nmedian = collection.reduce(ee.Reducer.median())\n\n# Display the median image.\nm.add_layer(\n median,\n {'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},\n 'Also median',\n)\nm\n```\n\nNote that the band names differ as a result of using `reduce()` instead of the\nconvenience method. Specifically, the names of the reducer have been appended to the\nband names.\n\nMore complex reductions are also possible using `reduce()`. For\nexample, to compute the long term linear trend over a collection, use one of the linear\nregression reducers. The following code computes the linear trend of MODIS Enhanced\nVegetation Index (EVI):\n\n### Code Editor (JavaScript)\n\n```javascript\n// This function adds a band representing the image timestamp.\nvar addTime = function(image) {\n return image.addBands(image.metadata('system:time_start')\n // Convert milliseconds from epoch to years to aid in\n // interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365));\n};\n\n// Load a MODIS collection, filter to several years of 16 day mosaics,\n// and map the time band function over it.\nvar collection = ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(addTime);\n\n// Select the bands to model with the independent variable first.\nvar trend = collection.select(['system:time_start', 'EVI'])\n // Compute the linear trend over time.\n .reduce(ee.Reducer.linearFit());\n\n// Display the trend with increasing slopes in green, decreasing in red.\nMap.setCenter(-96.943, 39.436, 5);\nMap.addLayer(\n trend,\n {min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},\n 'EVI trend');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# This function adds a band representing the image timestamp.\ndef add_time(image):\n return image.addBands(\n image.metadata('system:time_start')\n # Convert milliseconds from epoch to years to aid in\n # interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365)\n )\n\n\n# Load a MODIS collection, filter to several years of 16 day mosaics,\n# and map the time band function over it.\ncollection = (\n ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(add_time)\n)\n\n# Select the bands to model with the independent variable first.\ntrend = collection.select(['system:time_start', 'EVI']).reduce(\n # Compute the linear trend over time.\n ee.Reducer.linearFit()\n)\n\n# Display the trend with increasing slopes in green, decreasing in red.\nm.set_center(-96.943, 39.436, 5)\nm = geemap.Map()\nm.add_layer(\n trend,\n {\n 'min': 0,\n 'max': [-100, 100, 10000],\n 'bands': ['scale', 'scale', 'offset'],\n },\n 'EVI trend',\n)\nm\n```\n\nNote that the output of the reduction in this example is a two banded image\nwith one band for the slope of a linear regression (`scale`) and one band\nfor the intercept (`offset`). Explore the API documentation to see a list of\nthe reducers that are available to reduce an `ImageCollection` to a single\n`Image`.\n\nComposites have no projection\n-----------------------------\n\nComposite images created by reducing an image collection are able to produce pixels\nin any requested projection and therefore *have no fixed output projection* .\nInstead, composites have\n[the default\nprojection](/earth-engine/guides/projections#the-default-projection) of WGS-84 with 1-degree resolution pixels. Composites with the default\nprojection will be computed in whatever output projection is requested. A request\noccurs by displaying the composite in the Code Editor (learn about how the Code editor\nsets [scale](/earth-engine/guides/scale#scale-of-analysis) and\n[projection](/earth-engine/guides/projections)), or by explicitly specifying a\nprojection/scale as in an aggregation such as\n`ReduceRegion` or `Export`."]]