Toán tử
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Bạn có thể thực hiện toán học hình ảnh bằng các toán tử như add()
và subtract()
, nhưng đối với các phép tính phức tạp có nhiều hơn một vài thuật ngữ, hàm expression()
sẽ là một lựa chọn thay thế phù hợp. Hãy xem các phần sau đây để biết thêm thông tin về toán tử và biểu thức.
Toán tử
Toán tử toán học thực hiện các phép toán số học cơ bản trên các dải hình ảnh. Các hàm này nhận hai đầu vào:
hai hình ảnh hoặc một hình ảnh và một hằng số, được diễn giải là một hình ảnh hằng số đơn băng không có pixel bị che. Các phép toán được thực hiện trên mỗi pixel cho mỗi dải tần số.
Ví dụ cơ bản: hãy xem xét nhiệm vụ tính Chỉ số thực vật khác biệt chuẩn hoá (NDVI) bằng hình ảnh VIIRS, trong đó sử dụng các toán tử add()
, subtract()
và divide()
:
Trình soạn thảo mã (JavaScript)
// Load a VIIRS 8-day surface reflectance composite for May 2024.
var viirs202405 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(
ee.Filter.date('2024-05-01', '2024-05-16')).first();
// Compute NDVI.
var ndvi202405 = viirs202405.select('SurfReflect_I2')
.subtract(viirs202405.select('SurfReflect_I1'))
.divide(viirs202405.select('SurfReflect_I2')
.add(viirs202405.select('SurfReflect_I1')));
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Load a VIIRS 8-day surface reflectance composite for May 2024.
viirs202405 = (
ee.ImageCollection('NASA/VIIRS/002/VNP09H1')
.filter(ee.Filter.date('2024-05-01', '2024-05-16'))
.first()
)
# Compute NDVI.
ndvi202405 = (
viirs202405.select('SurfReflect_I2')
.subtract(viirs202405.select('SurfReflect_I1'))
.divide(
viirs202405.select('SurfReflect_I2').add(
viirs202405.select('SurfReflect_I1')
)
)
)
Chỉ giao điểm của các pixel chưa bị che giữa hai đầu vào mới được xem xét và trả về dưới dạng chưa bị che, tất cả các pixel khác đều bị che. Nhìn chung, nếu một trong hai đầu vào chỉ có một dải tần, thì dải tần đó sẽ được dùng cho tất cả các dải tần trong đầu vào còn lại. Nếu các đầu vào có cùng số lượng băng tần nhưng không có cùng tên, thì các đầu vào này sẽ được sử dụng theo cặp theo thứ tự tự nhiên. Các dải đầu ra được đặt tên theo dải đầu vào dài hơn trong hai dải đầu vào hoặc nếu hai dải đầu vào có độ dài bằng nhau thì theo thứ tự của dải đầu vào đầu tiên. Loại của các pixel đầu ra là tập hợp hợp nhất của các loại đầu vào.
Ví dụ sau đây về việc trừ hình ảnh nhiều băng tần minh hoạ cách các băng tần được so khớp tự động, dẫn đến một "vectơ thay đổi" cho mỗi pixel cho mỗi băng tần đồng thời xuất hiện.
Trình soạn thảo mã (JavaScript)
// Load a VIIRS 8-day surface reflectance composite for September 2024.
var viirs202409 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(
ee.Filter.date('2024-09-01', '2024-09-16')).first();
// Compute multi-band difference between the September composite and the
// previously loaded May composite.
var diff = viirs202409.subtract(ndvi202405);
Map.addLayer(diff, {
bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
min: -1,
max: 1
}, 'difference');
// Compute the squared difference in each band.
var squaredDifference = diff.pow(2);
Map.addLayer(squaredDifference, {
bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
min: 0,
max: 0.7
}, 'squared diff.');
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Load a VIIRS 8-day surface reflectance composite for September 2024.
viirs202409 = (
ee.ImageCollection('NASA/VIIRS/002/VNP09H1')
.filter(ee.Filter.date('2024-09-01', '2024-09-16'))
.first()
)
# Compute multi-band difference between the September composite and the
# previously loaded May composite.
diff = viirs202409.subtract(ndvi202405)
m = geemap.Map()
m.add_layer(
diff,
{
'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
'min': -1,
'max': 1,
},
'difference',
)
# Compute the squared difference in each band.
squared_difference = diff.pow(2)
m.add_layer(
squared_difference,
{
'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
'min': 0,
'max': 0.7,
},
'squared diff.',
)
display(m)
Trong phần thứ hai của ví dụ này, chênh lệch bình phương được tính bằng cách sử dụng image.pow(2)
. Để biết danh sách đầy đủ các toán tử toán học xử lý số học cơ bản, lượng giác, luỹ thừa, làm tròn, truyền dữ liệu, phép toán bit và nhiều toán tử khác, hãy xem tài liệu về API.
Cụm từ
Để triển khai các biểu thức toán học phức tạp hơn, hãy cân nhắc sử dụng image.expression()
. Phương thức này phân tích cú pháp một bản trình bày văn bản của một phép toán.
Ví dụ sau đây sử dụng expression()
để tính Chỉ số thực vật tăng cường (EVI):
Trình soạn thảo mã (JavaScript)
// Load a Landsat 8 image.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');
// Compute the EVI using an expression.
var evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {
'NIR': image.select('B5'),
'RED': image.select('B4'),
'BLUE': image.select('B2')
});
Map.centerObject(image, 9);
Map.addLayer(evi, {min: -1, max: 1, palette: ['a6611a', 'f5f5f5', '4dac26']});
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
để phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 image.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
# Compute the EVI using an expression.
evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',
{
'NIR': image.select('B5'),
'RED': image.select('B4'),
'BLUE': image.select('B2'),
},
)
# Define a map centered on San Francisco Bay.
map_evi = geemap.Map(center=[37.4675, -122.1363], zoom=9)
# Add the image layer to the map and display it.
map_evi.add_layer(
evi, {'min': -1, 'max': 1, 'palette': ['a6611a', 'f5f5f5', '4dac26']}, 'evi'
)
display(map_evi)
Hãy quan sát rằng đối số đầu tiên của expression()
là bản trình bày bằng văn bản của phép toán, đối số thứ hai là một từ điển trong đó khoá là tên biến được sử dụng trong biểu thức và giá trị là các dải hình ảnh mà các biến sẽ được ánh xạ. Các dải trong hình ảnh có thể được gọi là b("band name")
hoặc b(index)
, ví dụ: b(0)
, thay vì cung cấp từ điển. Bạn có thể xác định các dải tần từ các hình ảnh khác với hình ảnh đầu vào khi sử dụng từ điển bản đồ dải tần. Xin lưu ý rằng expression()
sử dụng "phép chia sàn", bỏ phần dư và trả về một số nguyên khi chia hai số nguyên. Ví dụ: 10 / 20 = 0
. Để thay đổi hành vi này, hãy nhân một trong các toán hạng với
1.0
: 10 * 1.0 / 20 = 0.5
. Chỉ giao điểm của các pixel chưa bị che mới được xem xét và trả về dưới dạng chưa bị che khi các dải từ nhiều hình ảnh nguồn được đánh giá. Các toán tử biểu thức được hỗ trợ được liệt kê trong bảng sau.
Toán tử cho expression()
Loại |
Biểu tượng |
Tên |
Số học |
+ - * / % ** |
Cộng, trừ, nhân, chia, mô đun, luỹ thừa |
Quan hệ |
== != < > <= >= |
Bằng, Không bằng, Nhỏ hơn, Lớn hơn, v.v. |
Logic |
&& || ! ^ |
And, Or, Not, Xor |
Ba ngôi |
? : |
If then else |
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[[["\u003cp\u003eEarth Engine provides tools for performing image math, including operators for basic arithmetic and the \u003ccode\u003eexpression()\u003c/code\u003e function for complex computations.\u003c/p\u003e\n"],["\u003cp\u003eOperators like \u003ccode\u003eadd()\u003c/code\u003e, \u003ccode\u003esubtract()\u003c/code\u003e, and \u003ccode\u003edivide()\u003c/code\u003e enable pixel-wise calculations between images or an image and a constant.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eexpression()\u003c/code\u003e function allows implementing custom formulas by parsing text representations of mathematical operations and mapping variables to image bands.\u003c/p\u003e\n"],["\u003cp\u003eWhen using \u003ccode\u003eexpression()\u003c/code\u003e, ensure to handle integer division appropriately by multiplying one operand by \u003ccode\u003e1.0\u003c/code\u003e to preserve decimal values if needed.\u003c/p\u003e\n"],["\u003cp\u003eBoth operators and expressions automatically handle band matching and masking, considering only unmasked pixels in the calculations.\u003c/p\u003e\n"]]],[],null,["# Mathematical Operations\n\n|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_math.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_math.ipynb) |\n\nImage math can be performed using operators like `add()` and\n`subtract()`, but for complex computations with more than a couple of terms, the\n`expression()` function provides a good alternative. See the following sections\nfor more information on [operators](#operators) and\n[expressions](#expressions).\n\nOperators\n---------\n\nMath operators perform basic arithmetic operations on image bands. They take two inputs:\neither two images or one image and a constant term, which\nis interpreted as a single-band constant image with no masked pixels. Operations are performed\nper pixel for each band.\n\nAs a basic example, consider the task of calculating the Normalized Difference Vegetation\nIndex (NDVI) using VIIRS imagery, where `add()`, `subtract()`,\nand `divide()` operators are used:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a VIIRS 8-day surface reflectance composite for May 2024.\nvar viirs202405 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(\n ee.Filter.date('2024-05-01', '2024-05-16')).first();\n\n// Compute NDVI.\nvar ndvi202405 = viirs202405.select('SurfReflect_I2')\n .subtract(viirs202405.select('SurfReflect_I1'))\n .divide(viirs202405.select('SurfReflect_I2')\n .add(viirs202405.select('SurfReflect_I1')));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a VIIRS 8-day surface reflectance composite for May 2024.\nviirs202405 = (\n ee.ImageCollection('NASA/VIIRS/002/VNP09H1')\n .filter(ee.Filter.date('2024-05-01', '2024-05-16'))\n .first()\n)\n\n# Compute NDVI.\nndvi202405 = (\n viirs202405.select('SurfReflect_I2')\n .subtract(viirs202405.select('SurfReflect_I1'))\n .divide(\n viirs202405.select('SurfReflect_I2').add(\n viirs202405.select('SurfReflect_I1')\n )\n )\n)\n```\n| **Note:** the normalized difference operation is available as a shortcut method: [`normalizedDifference()`](/earth-engine/apidocs/ee-image-normalizeddifference).\n\nOnly the intersection of unmasked pixels between the two inputs are\nconsidered and returned as unmasked, all else are masked. In general, if either input has only\none band, then it is used against all the bands in the other input. If the inputs have the same\nnumber of bands, but not the same names, they're used pairwise in the natural order. The\noutput bands are named for the longer of the two inputs, or if they're equal in length, in the\nfirst input's order. The type of the output pixels is the union of the input types.\n\nThe following example of multi-band image subtraction demonstrates how bands are matched\nautomatically, resulting in a \"change vector\" for each pixel for each co-occurring band.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a VIIRS 8-day surface reflectance composite for September 2024.\nvar viirs202409 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(\n ee.Filter.date('2024-09-01', '2024-09-16')).first();\n\n// Compute multi-band difference between the September composite and the\n// previously loaded May composite.\nvar diff = viirs202409.subtract(ndvi202405);\nMap.addLayer(diff, {\n bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n min: -1,\n max: 1\n}, 'difference');\n\n// Compute the squared difference in each band.\nvar squaredDifference = diff.pow(2);\nMap.addLayer(squaredDifference, {\n bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n min: 0,\n max: 0.7\n}, 'squared diff.');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a VIIRS 8-day surface reflectance composite for September 2024.\nviirs202409 = (\n ee.ImageCollection('NASA/VIIRS/002/VNP09H1')\n .filter(ee.Filter.date('2024-09-01', '2024-09-16'))\n .first()\n)\n\n# Compute multi-band difference between the September composite and the\n# previously loaded May composite.\ndiff = viirs202409.subtract(ndvi202405)\n\nm = geemap.Map()\nm.add_layer(\n diff,\n {\n 'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n 'min': -1,\n 'max': 1,\n },\n 'difference',\n)\n\n# Compute the squared difference in each band.\nsquared_difference = diff.pow(2)\n\nm.add_layer(\n squared_difference,\n {\n 'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n 'min': 0,\n 'max': 0.7,\n },\n 'squared diff.',\n)\ndisplay(m)\n```\n\nIn the second part of this example, the squared difference is computed using\n`image.pow(2)`. For the complete list of mathematical operators handling\nbasic arithmetic, trigonometry, exponentiation, rounding, casting, bitwise operations\nand more, see the [API documentation](/earth-engine/apidocs).\n\nExpressions\n-----------\n\nTo implement more complex mathematical expressions, consider using\n`image.expression()`, which parses a text representation of a math operation.\nThe following example uses `expression()` to compute the Enhanced\nVegetation Index (EVI):\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');\n\n// Compute the EVI using an expression.\nvar evi = image.expression(\n '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {\n 'NIR': image.select('B5'),\n 'RED': image.select('B4'),\n 'BLUE': image.select('B2')\n});\n\nMap.centerObject(image, 9);\nMap.addLayer(evi, {min: -1, max: 1, palette: ['a6611a', 'f5f5f5', '4dac26']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 image.\nimage = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')\n\n# Compute the EVI using an expression.\nevi = image.expression(\n '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',\n {\n 'NIR': image.select('B5'),\n 'RED': image.select('B4'),\n 'BLUE': image.select('B2'),\n },\n)\n\n# Define a map centered on San Francisco Bay.\nmap_evi = geemap.Map(center=[37.4675, -122.1363], zoom=9)\n\n# Add the image layer to the map and display it.\nmap_evi.add_layer(\n evi, {'min': -1, 'max': 1, 'palette': ['a6611a', 'f5f5f5', '4dac26']}, 'evi'\n)\ndisplay(map_evi)\n```\n\nObserve that the first argument to `expression()` is the textual representation of\nthe math operation, the second argument is a dictionary where the keys are variable names used\nin the expression and the values are the image bands to which the variables should be\nmapped. Bands in the image may be referred to as `b(\"band name\")` or\n`b(index)`, for example `b(0)`, instead\nof providing the dictionary. Bands can be defined from images other than the input when using\nthe band map dictionary. Note that `expression()` uses \"floor division\", which\ndiscards the remainder and returns an integer when two integers are divided. For example\n`10 / 20 = 0`. To change this behavior, multiply one of the operands by\n`1.0`: `10 * 1.0 / 20 = 0.5`. Only the intersection of unmasked pixels\nare considered and returned as unmasked when bands from more than one source image are\nevaluated. Supported expression operators are listed in the following table.\n\n| Type | Symbol | Name |\n|----------------|---------------------|----------------------------------------------------|\n| **Arithmetic** | + - \\* / % \\*\\* | Add, Subtract, Multiply, Divide, Modulus, Exponent |\n| **Relational** | == != \\\u003c \\\u003e \\\u003c= \\\u003e= | Equal, Not Equal, Less Than, Greater than, etc. |\n| **Logical** | \\&\\& \\|\\| ! \\^ | And, Or, Not, Xor |\n| **Ternary** | ? : | If then else |\n[Operators for `expression()`]"]]