공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
이미지 개요
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
시작하기 문서에서 언급했듯이 래스터 데이터는 Earth Engine에서 Image
객체로 표시됩니다. 이미지는 하나 이상의 밴드로 구성되며 각 밴드에는 자체 이름, 데이터 유형, 배율, 마스크, 프로젝션이 있습니다. 각 이미지에는 속성 집합으로 저장된 메타데이터가 있습니다.
ee.Image
생성자
Earth Engine 애셋 ID를 ee.Image
생성자에 붙여넣어 이미지를 로드할 수 있습니다. 이미지 ID는 데이터 카탈로그에서 확인할 수 있습니다.
예를 들어 디지털 고도 모델 (NASADEM)에 적용할 수 있습니다.
코드 편집기 (JavaScript)
var loadedImage = ee.Image('NASA/NASADEM_HGT/001');
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
loaded_image = ee.Image('NASA/NASADEM_HGT/001')
코드 편집기 검색 도구를 통해 이미지를 찾는 것도 동일합니다. 애셋을 가져오면 이미지 구성 코드가 Code Editor의 가져오기 섹션에 자동으로 작성됩니다. 개인 애셋 ID를 ee.Image
생성자의 인수로 사용할 수도 있습니다.
ee.ImageCollection
에서 ee.Image
가져오기
컬렉션에서 이미지를 가져오는 일반적인 방법은 필터를 사용하여 컬렉션을 필터링하는 것입니다. 이때 필터는 특이성이 감소하는 순서로 적용합니다. 예를 들어 Sentinel-2 표면 반사율 컬렉션에서 이미지를 가져오려면 다음 단계를 따르세요.
코드 편집기 (JavaScript)
var first = ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first();
Map.centerObject(first, 11);
Map.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
first = (
ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first()
)
# Define a map centered on southern Maine.
m = geemap.Map(center=[43.7516, -70.8155], zoom=11)
# Add the image layer to the map and display it.
m.add_layer(
first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'
)
display(m)
정렬은 필터 뒤에 적용됩니다. 전체 컬렉션을 정렬하지 마세요.
Cloud GeoTIFF의 이미지
ee.Image.loadGeoTIFF()
를 사용하여 Google Cloud Storage의 Cloud Optimized GeoTIFF에서 이미지를 로드할 수 있습니다.
예를 들어 Google Cloud에 호스팅된 공개 Landsat 데이터 세트에는 Landsat 8 장면의 밴드 5에 해당하는 이 GeoTIFF가 포함되어 있습니다. ee.Image.loadGeoTIFF()
를 사용하여 Cloud Storage에서 이 이미지를 로드할 수 있습니다.
코드 편집기 (JavaScript)
var uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +
'LC08_L1GT_001002_20160817_20170322_01_T2/' +
'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';
var cloudImage = ee.Image.loadGeoTIFF(uri);
print(cloudImage);
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
uri = (
'gs://gcp-public-data-landsat/LC08/01/001/002/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'
)
cloud_image = ee.Image.loadGeoTIFF(uri)
display(cloud_image)
Earth Engine에서 Cloud Storage로 내보낸 Cloud 최적화 GeoTIFF를 새로고침하려면 내보낼 때 여기에 설명된 대로 cloudOptimized
를 true로 설정하세요.
Zarr v2 배열의 이미지
ee.Image.loadZarrV2Array()
를 사용하여 Google Cloud Storage의 Zarr v2 배열에서 이미지를 로드할 수 있습니다. 예를 들어 Google Cloud에서 호스팅되는 공개 ERA5 데이터 세트에는 지구 표면에서 증발한 물의 미터에 해당하는 이 Zarr v2 배열이 포함되어 있습니다. ee.Image.loadZarrV2Array()
를 사용하여 Cloud Storage에서 이 배열을 로드할 수 있습니다.
코드 편집기 (JavaScript)
var timeStart = 1000000;
var timeEnd = 1000010;
var zarrV2ArrayImage = ee.Image.loadZarrV2Array({
uri:
'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj: 'EPSG:4326',
starts: [timeStart],
ends: [timeEnd]
});
print(zarrV2ArrayImage);
Map.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
time_start = 1000000
time_end = 1000010
zarr_v2_array_image = ee.Image.loadZarrV2Array(
uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj='EPSG:4326',
starts=[time_start],
ends=[time_end],
)
display(zarr_v2_array_image)
m.add_layer(
zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'
)
m
상수 이미지
ID로 이미지를 로드하는 것 외에도 상수, 목록 또는 기타 적절한 Earth Engine 객체에서 이미지를 만들 수도 있습니다. 다음은 이미지를 만들고, 밴드 하위 집합을 가져오고, 밴드를 조작하는 메서드를 보여줍니다.
코드 편집기 (JavaScript)
// Create a constant image.
var image1 = ee.Image(1);
print(image1);
// Concatenate two images into one multi-band image.
var image2 = ee.Image(2);
var image3 = ee.Image.cat([image1, image2]);
print(image3);
// Create a multi-band image from a list of constants.
var multiband = ee.Image([1, 2, 3]);
print(multiband);
// Select and (optionally) rename bands.
var renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], // old names
['band1', 'band2', 'band3'] // new names
);
print(renamed);
// Add bands to an image.
var image4 = image3.addBands(ee.Image(42));
print(image4);
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# Create a constant image.
image_1 = ee.Image(1)
display(image_1)
# Concatenate two images into one multi-band image.
image_2 = ee.Image(2)
image_3 = ee.Image.cat([image_1, image_2])
display(image_3)
# Create a multi-band image from a list of constants.
multiband = ee.Image([1, 2, 3])
display(multiband)
# Select and (optionally) rename bands.
renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], # old names
['band1', 'band2', 'band3'], # new names
)
display(renamed)
# Add bands to an image.
image_4 = image_3.addBands(ee.Image(42))
display(image_4)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-25(UTC)
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[[["\u003cp\u003eIn Earth Engine, raster data is represented as \u003ccode\u003eImage\u003c/code\u003e objects, which can be created by loading existing assets or by defining them with constant values.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImage\u003c/code\u003e objects can be created from Earth Engine assets, \u003ccode\u003eImageCollection\u003c/code\u003e objects, and Cloud Optimized GeoTIFFs (COG) stored in Google Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eImages in Earth Engine are composed of bands, each with its own data type, scale, mask, and projection, and images can be manipulated using methods such as \u003ccode\u003eselect\u003c/code\u003e, \u003ccode\u003eaddBands\u003c/code\u003e, and \u003ccode\u003ecat\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImageCollection\u003c/code\u003e objects can be filtered and sorted to retrieve specific images, and \u003ccode\u003eee.Image.loadGeoTIFF()\u003c/code\u003e is used to load images from Cloud Optimized GeoTIFFs in Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eConstant images can be created from numerical values, lists of values, and other suitable Earth Engine objects, allowing for flexible image manipulation and analysis.\u003c/p\u003e\n"]]],[],null,["# Image Overview\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) |\n\nAs mentioned in the [Get Started](/earth-engine/guides/getstarted#earth-engine-data-structures)\ndoc, raster data are represented as `Image` objects in Earth Engine. Images are\ncomposed of one or more bands and each band has its own name, data type, scale, mask\nand projection. Each image has metadata stored as a set of properties.\n\n`ee.Image` constructor\n----------------------\n\nImages can be loaded by pasting an Earth Engine asset ID into the `ee.Image`\nconstructor. You can find image IDs in the [data catalog](/earth-engine/datasets).\nFor example, to a digial elevation model ([NASADEM](/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001)):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar loadedImage = ee.Image('NASA/NASADEM_HGT/001');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nloaded_image = ee.Image('NASA/NASADEM_HGT/001')\n```\n\n\nNote that finding an image through\n[the Code Editor search tool](/earth-engine/guides/playground#search-tool)\nis equivalent. When you import the asset, the image construction code is written\nfor you in the [imports section of the\nCode Editor](/earth-engine/guides/playground#imports). You can also use a personal\n[asset ID](/earth-engine/guides/manage_assets#asset_id) as the argument to the\n`ee.Image` constructor.\n\nGet an `ee.Image` from an `ee.ImageCollection`\n----------------------------------------------\n\n\nThe standard way to get an image out of a collection is to filter the collection, with\nfilters in order of decreasing specificity. For example, to get an image out of the\n[Sentinel-2 surface reflectance collection](/earth-engine/datasets/catalog/COPERNICUS_S2_SR):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar first = ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first();\nMap.centerObject(first, 11);\nMap.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfirst = (\n ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first()\n)\n\n# Define a map centered on southern Maine.\nm = geemap.Map(center=[43.7516, -70.8155], zoom=11)\n\n# Add the image layer to the map and display it.\nm.add_layer(\n first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'\n)\ndisplay(m)\n```\n\n\nNote that the sort is *after* the filters. Avoid sorting the entire collection.\n\nImages from Cloud GeoTIFFs\n--------------------------\n\n\nYou can use `ee.Image.loadGeoTIFF()` to load images from\n[Cloud Optimized\nGeoTIFFs](https://github.com/cogeotiff/cog-spec/blob/master/spec.md) in [Google Cloud Storage](https://cloud.google.com/storage).\nFor example, the\n[public\nLandsat dataset](https://console.cloud.google.com/marketplace/details/usgs-public-data/landast) hosted in Google Cloud contains\n[this\nGeoTIFF](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-landsat/LC08/01/001/002/LC08_L1GT_001002_20160817_20170322_01_T2/LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF), corresponding to band 5 from a Landsat 8 scene. You can load this image from\nCloud Storage using `ee.Image.loadGeoTIFF()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';\nvar cloudImage = ee.Image.loadGeoTIFF(uri);\nprint(cloudImage);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nuri = (\n 'gs://gcp-public-data-landsat/LC08/01/001/002/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'\n)\ncloud_image = ee.Image.loadGeoTIFF(uri)\ndisplay(cloud_image)\n```\n\n\nNote that if you want to reload a Cloud Optimized GeoTIFF that you\n[export from Earth Engine to\nCloud Storage](/earth-engine/guides/exporting#to-cloud-storage), when you do the export, set\n`cloudOptimized` to **true** as\ndescribed [here](/earth-engine/guides/exporting#configuration-parameters).\n\nImages from Zarr v2 arrays\n--------------------------\n\n\nYou can use `ee.Image.loadZarrV2Array()` to load an image from a\n[Zarr v2 array](https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html) in\n[Google Cloud Storage](https://cloud.google.com/storage). For example, the public\nERA5 dataset hosted in Google Cloud contains\n[this Zarr v2 array](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray),\ncorresponding to meters of water that has evaporated from the Earth's surface. You can load\nthis array from Cloud Storage using `ee.Image.loadZarrV2Array()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar timeStart = 1000000;\nvar timeEnd = 1000010;\nvar zarrV2ArrayImage = ee.Image.loadZarrV2Array({\n uri:\n 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj: 'EPSG:4326',\n starts: [timeStart],\n ends: [timeEnd]\n});\nprint(zarrV2ArrayImage);\nMap.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ntime_start = 1000000\ntime_end = 1000010\nzarr_v2_array_image = ee.Image.loadZarrV2Array(\n uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj='EPSG:4326',\n starts=[time_start],\n ends=[time_end],\n)\n\ndisplay(zarr_v2_array_image)\n\nm.add_layer(\n zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'\n)\nm\n```\n\nConstant images\n---------------\n\nIn addition to loading images by ID, you can also create images\nfrom constants, lists or other suitable Earth Engine objects. The following illustrates\nmethods for creating images, getting band subsets, and manipulating bands:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create a constant image.\nvar image1 = ee.Image(1);\nprint(image1);\n\n// Concatenate two images into one multi-band image.\nvar image2 = ee.Image(2);\nvar image3 = ee.Image.cat([image1, image2]);\nprint(image3);\n\n// Create a multi-band image from a list of constants.\nvar multiband = ee.Image([1, 2, 3]);\nprint(multiband);\n\n// Select and (optionally) rename bands.\nvar renamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], // old names\n ['band1', 'band2', 'band3'] // new names\n);\nprint(renamed);\n\n// Add bands to an image.\nvar image4 = image3.addBands(ee.Image(42));\nprint(image4);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create a constant image.\nimage_1 = ee.Image(1)\ndisplay(image_1)\n\n# Concatenate two images into one multi-band image.\nimage_2 = ee.Image(2)\nimage_3 = ee.Image.cat([image_1, image_2])\ndisplay(image_3)\n\n# Create a multi-band image from a list of constants.\nmultiband = ee.Image([1, 2, 3])\ndisplay(multiband)\n\n# Select and (optionally) rename bands.\nrenamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], # old names\n ['band1', 'band2', 'band3'], # new names\n)\ndisplay(renamed)\n\n# Add bands to an image.\nimage_4 = image_3.addBands(ee.Image(42))\ndisplay(image_4)\n```"]]