Operacje logiczne, warunkowe i algorytmiczne

Obiekty ee.Image mają zestaw metod relacyjnych, warunkowych i boolowskich do tworzenia wyrażeń decyzyjnych. Wyniki tych metod są przydatne do ograniczania analizy do określonych pikseli lub regionów za pomocą maskowania, tworzenia map klasyfikacji i przypisywania wartości.

Operatory relacji i operatory logiczne

Relacyjne metody to m.in.:

eq(), gt(), gte(), lt() i lte()

Metody wartości logicznej:

Edytor kodu (JavaScript)

and(), or() i not()

Colab (Python)

And(), Or() i Not()

Aby porównać obrazy na poziomie piksela, użyj operatorów relacji. Aby wyodrębnić obszary zurbanizowane na obrazie, przykład ten używa operatorów relacyjnych do ustawiania progów indeksów spektralnych, łącząc progi za pomocą operatora and:

Edytor kodu (JavaScript)

// Load a Landsat 8 image.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');

// Create NDVI and NDWI spectral indices.
var ndvi = image.normalizedDifference(['B5', 'B4']);
var ndwi = image.normalizedDifference(['B3', 'B5']);

// Create a binary layer using logical operations.
var bare = ndvi.lt(0.2).and(ndwi.lt(0));

// Mask and display the binary layer.
Map.setCenter(-122.3578, 37.7726, 12);
Map.setOptions('satellite');
Map.addLayer(bare.selfMask(), {}, 'bare');

Konfiguracja Pythona

Informacje o interfejsie Python API i o używaniu pakietu geemap do programowania interaktywnego znajdziesz na stronie Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

# Load a Landsat 8 image.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')

# Create NDVI and NDWI spectral indices.
ndvi = image.normalizedDifference(['B5', 'B4'])
ndwi = image.normalizedDifference(['B3', 'B5'])

# Create a binary layer using logical operations.
bare = ndvi.lt(0.2).And(ndwi.lt(0))

# Define a map centered on San Francisco Bay.
map_bare = geemap.Map(center=[37.7726, -122.3578], zoom=12)

# Add the masked image layer to the map and display it.
map_bare.add_layer(bare.selfMask(), None, 'bare')
display(map_bare)

Jak pokazuje ten przykład, wyjście operatorów relacyjnych i algorytmów logicznych to albo prawda (1), albo fałsz (0). Aby zamaskować zera, możesz zamaskować wynikowy obraz binarny za pomocą funkcji selfMask().

relational_sf
Niski NDVI i niski NDWI (biały) z Landsat 8, San Francisco, Kalifornia, USA.

Obrazy binarne zwracane przez operatory relacyjne i logiczne można stosować z operatorami matematycznymi. W tym przykładzie za pomocą operatorów relacji i funkcji add() tworzone są strefy urbanizacji na obrazie przedstawiającym nocne światła:

Edytor kodu (JavaScript)

// Load a 2012 nightlights image.
var nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012');
var lights = nl2012.select('stable_lights');

// Define arbitrary thresholds on the 6-bit stable lights band.
var zones = lights.gt(30).add(lights.gt(55)).add(lights.gt(62));

// Display the thresholded image as three distinct zones near Paris.
var palette = ['000000', '0000FF', '00FF00', 'FF0000'];
Map.setCenter(2.373, 48.8683, 8);
Map.addLayer(zones, {min: 0, max: 3, palette: palette}, 'development zones');

Konfiguracja Pythona

Informacje o interfejsie Python API i o używaniu pakietu geemap do programowania interaktywnego znajdziesz na stronie Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

# Load a 2012 nightlights image.
nl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')
lights = nl_2012.select('stable_lights')

# Define arbitrary thresholds on the 6-bit stable lights band.
zones = lights.gt(30).add(lights.gt(55)).add(lights.gt(62))

# Define a map centered on Paris, France.
map_zones = geemap.Map(center=[48.8683, 2.373], zoom=8)

# Display the thresholded image as three distinct zones near Paris.
palette = ['000000', '0000FF', '00FF00', 'FF0000']
map_zones.add_layer(
    zones, {'min': 0, 'max': 3, 'palette': palette}, 'development zones'
)
display(map_zones)

Operatory warunkowe

Pamiętaj, że kod w poprzednim przykładzie jest równoważny użyciu operatora trójargumentowego zaimplementowanego przez funkcję expression():

Edytor kodu (JavaScript)

// Create zones using an expression, display.
var zonesExp = nl2012.expression(
    "(b('stable_lights') > 62) ? 3" +
      ": (b('stable_lights') > 55) ? 2" +
        ": (b('stable_lights') > 30) ? 1" +
          ": 0"
);
Map.addLayer(zonesExp,
             {min: 0, max: 3, palette: palette},
             'development zones (ternary)');

Konfiguracja Pythona

Informacje o interfejsie Python API i o używaniu pakietu geemap do programowania interaktywnego znajdziesz na stronie Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

# Create zones using an expression, display.
zones_exp = nl_2012.expression(
    "(b('stable_lights') > 62) ? 3 "
    ": (b('stable_lights') > 55) ? 2 "
    ": (b('stable_lights') > 30) ? 1 "
    ': 0'
)

# Define a map centered on Paris, France.
map_zones_exp = geemap.Map(center=[48.8683, 2.373], zoom=8)

# Add the image layer to the map and display it.
map_zones_exp.add_layer(
    zones_exp, {'min': 0, 'max': 3, 'palette': palette}, 'zones exp'
)
display(map_zones_exp)

Zwróć uwagę, że w poprzednim przykładzie wyrażenia odwołanie do interesującego nas zakresu jest tworzone za pomocą funkcji b(), a nie słownika z nazwami zmiennych. Więcej informacji o wyrażeniach obrazkowych znajdziesz na tej stronie. Użycie operatorów matematycznych lub wyrażenia da ten sam wynik.

conditional_paris
Dowolny obszar Paryża we Francji na obrazie nocnym z 2012 r.

Innym sposobem na implementowanie operacji warunkowych na obrazach jest użycie operatora where(). Rozważ zastąpienie zamaskowanych pikseli innymi danymi. W tym przykładzie piksele z chmurami są zastępowane pikselami z obrazu bez chmur za pomocą funkcji where():

Edytor kodu (JavaScript)

// Load a cloudy Sentinel-2 image.
var image = ee.Image(
  'COPERNICUS/S2_SR/20210114T185729_20210114T185730_T10SEG');
Map.addLayer(image,
             {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000},
             'original image');

// Load another image to replace the cloudy pixels.
var replacement = ee.Image(
  'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');

// Set cloudy pixels (greater than 5% probability) to the other image.
var replaced = image.where(image.select('MSK_CLDPRB').gt(5), replacement);

// Display the result.
Map.setCenter(-122.3769, 37.7349, 11);
Map.addLayer(replaced,
             {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000},
             'clouds replaced');

Konfiguracja Pythona

Informacje o interfejsie Python API i o używaniu pakietu geemap do programowania interaktywnego znajdziesz na stronie Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

# Load a cloudy Sentinel-2 image.
image = ee.Image('COPERNICUS/S2_SR/20210114T185729_20210114T185730_T10SEG')

# Load another image to replace the cloudy pixels.
replacement = ee.Image(
    'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
)

# Set cloudy pixels (greater than 5% probability) to the other image.
replaced = image.where(image.select('MSK_CLDPRB').gt(5), replacement)

# Define a map centered on San Francisco Bay.
map_replaced = geemap.Map(center=[37.7349, -122.3769], zoom=11)

# Display the images on a map.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}
map_replaced.add_layer(image, vis_params, 'original image')
map_replaced.add_layer(replaced, vis_params, 'clouds replaced')
display(map_replaced)