建议可通过以下几种方式提升广告系列的效果:
- 推出新的相关功能
- 通过改进出价、关键字和广告,获得更高的投入回报
- 提升广告系列的整体效果和效率
如需提高优化得分,您可以使用 RecommendationService
检索建议,然后相应地采纳或拒绝这些建议。您还可以使用 RecommendationSubscriptionService
订阅自动采纳建议。
优化得分
优化得分是一个估算的分值,反映了您的 Google Ads 账号在设置方面的优化程度,可在 Customer
和 Campaign
一级查看。
Customer.optimization_score_weight
仅适用于非经理账号,用于计算多个账号的整体优化得分。检索账号的优化得分和优化得分权重,然后将它们相乘 (Customer.optimization_score * Customer.optimization_score_weight
) 以计算总体优化得分。
customer
和 campaign
报告提供与优化相关的指标:
metrics.optimization_score_url
会提供指向相应账号的深层链接,以便您在 Google Ads 界面中查看相关建议的相关信息。metrics.optimization_score_uplift
表示采纳所有相关建议后优化得分会提高多少。这是一个基于所有可用建议的整体估算值,而不仅仅是每个建议的提升幅度得分的总和。
如需对返回的推荐进行分组和排序,您可以在查询中使用 segments.recommendation_type
按推荐类型对这两个指标进行细分。
推荐类型
完全受支持的建议类型
RecommendationType | 说明 |
---|---|
CAMPAIGN_BUDGET |
修正受预算限制的广告系列 |
KEYWORD |
添加新关键字 |
TEXT_AD |
添加推荐广告 |
TARGET_CPA_OPT_IN |
采用“目标每次转化费用”出价策略 |
MAXIMIZE_CONVERSIONS_OPT_IN |
采用“尽可能提高转化次数”出价策略 |
MAXIMIZE_CONVERSION_VALUE_OPT_IN |
采用“尽可能提高转化价值”出价策略 |
ENHANCED_CPC_OPT_IN |
采用“智能点击付费”出价策略 |
MAXIMIZE_CLICKS_OPT_IN |
采用“尽可能争取更多点击次数”出价策略 |
OPTIMIZE_AD_ROTATION |
使用优化型广告轮播 |
MOVE_UNUSED_BUDGET |
将未使用的预算转移到受限预算 |
TARGET_ROAS_OPT_IN |
采用“目标广告支出回报率”出价策略 |
FORECASTING_CAMPAIGN_BUDGET |
修正预计未来会受预算限制的广告系列 |
RESPONSIVE_SEARCH_AD |
添加新的自适应搜索广告 |
MARGINAL_ROI_CAMPAIGN_BUDGET |
调整广告系列预算以提高投资回报率 |
USE_BROAD_MATCH_KEYWORD |
为采用自动出价的以促成转化为目标的广告系列使用广泛匹配 |
RESPONSIVE_SEARCH_AD_ASSET |
向广告添加自适应搜索广告素材资源 |
RESPONSIVE_SEARCH_AD_IMPROVE_AD_STRENGTH |
提升自适应搜索广告的广告效力 |
DISPLAY_EXPANSION_OPT_IN |
更新广告系列以使用展示广告系列扩展功能 |
SEARCH_PARTNERS_OPT_IN |
利用 Google 搜索网络合作伙伴扩大覆盖面 |
CUSTOM_AUDIENCE_OPT_IN |
创建自定义受众群体 |
IMPROVE_DEMAND_GEN_AD_STRENGTH |
提升需求开发广告系列中广告的效力 |
UPGRADE_SMART_SHOPPING_CAMPAIGN_TO_PERFORMANCE_MAX |
将智能购物广告系列升级为效果最大化广告系列 |
UPGRADE_LOCAL_CAMPAIGN_TO_PERFORMANCE_MAX |
将旧版本地广告系列升级为效果最大化广告系列 |
SHOPPING_MIGRATE_REGULAR_SHOPPING_CAMPAIGN_OFFERS_TO_PERFORMANCE_MAX |
将常规购物广告系列宣传的产品迁移到现有的效果最大化广告系列 |
MIGRATE_DYNAMIC_SEARCH_ADS_CAMPAIGN_TO_PERFORMANCE_MAX |
将动态搜索广告系列迁移到效果最大化广告系列 |
PERFORMANCE_MAX_OPT_IN |
在您的账号中制作效果最大化广告系列 |
IMPROVE_PERFORMANCE_MAX_AD_STRENGTH |
将效果最大化广告系列的素材资源组效力提升至“极佳”评分 |
PERFORMANCE_MAX_FINAL_URL_OPT_IN |
为效果最大化广告系列启用“最终到达网址扩展”功能 |
RAISE_TARGET_CPA_BID_TOO_LOW |
如果目标每次转化费用过低且转化次数很少或没有转化,请提高目标每次转化费用 |
FORECASTING_SET_TARGET_ROAS |
在预计会增加流量的季节性活动之前提高预算,并将出价策略从“尽可能提高转化价值”更改为“目标广告支出回报率” |
LEAD_FORM_ASSET |
向广告系列添加潜在客户表单素材资源 |
CALLOUT_ASSET |
在广告系列一级或客户一级添加宣传信息素材资源 |
SITELINK_ASSET |
在广告系列一级或客户一级添加站内链接素材资源 |
CALL_ASSET |
在广告系列一级或客户一级添加电话素材资源 |
SHOPPING_ADD_AGE_GROUP |
为因缺少年龄段而被降级的商品添加年龄段属性 |
SHOPPING_ADD_COLOR |
为因缺少颜色而被降级的商品添加颜色 |
SHOPPING_ADD_GENDER |
为因缺少适用性别而被降级的商品添加适用性别 |
SHOPPING_ADD_GTIN |
为因缺少 GTIN 而被降级的商品添加 GTIN(全球贸易项目代码) |
SHOPPING_ADD_MORE_IDENTIFIERS |
为因缺少标识码而被降级的商品添加更多标识码 |
SHOPPING_ADD_SIZE |
为因缺少尺码而被降级的商品添加尺码 |
SHOPPING_ADD_PRODUCTS_TO_CAMPAIGN |
为广告系列添加要投放的产品 |
SHOPPING_FIX_DISAPPROVED_PRODUCTS |
解决商品被拒登的问题 |
SHOPPING_TARGET_ALL_OFFERS |
制作一个定位所有商品的全包型广告系列 |
SHOPPING_FIX_SUSPENDED_MERCHANT_CENTER_ACCOUNT |
解决 Merchant Center 账号中止问题 |
SHOPPING_FIX_MERCHANT_CENTER_ACCOUNT_SUSPENSION_WARNING |
解决 Merchant Center 账号中止警告问题 |
DYNAMIC_IMAGE_EXTENSION_OPT_IN |
在账号中启用动态图片附加信息 |
RAISE_TARGET_CPA |
提高目标每次转化费用 |
LOWER_TARGET_ROAS |
降低目标广告支出回报率 |
FORECASTING_SET_TARGET_CPA |
在预计会带来更多流量的季节性活动之前,为未指定目标每次转化费用的广告系列设置目标每次转化费用 |
SET_TARGET_CPA |
为未指定目标每次转化费用的广告系列设置目标每次转化费用 |
SET_TARGET_ROAS |
为未指定目标广告支出回报率的广告系列设置目标广告支出回报率 |
REFRESH_CUSTOMER_MATCH_LIST |
更新过去 90 天内未更新的客户名单 |
IMPROVE_GOOGLE_TAG_COVERAGE |
在更多网页上部署 Google 代码 |
KEYWORD_MATCH_TYPE (已弃用) |
已废弃,请改用 USE_BROAD_MATCH_KEYWORD |
观看此视频了解详情
处理不受支持的类型
检索推荐内容
与 Google Ads API 中的大多数其他实体一样,您可以将 GoogleAdsService.SearchStream
与 Google Ads 查询语言查询搭配使用,以提取 Recommendation
对象。
对于每种类型的建议,系统都会在特定于建议的字段中提供详细信息。例如,CAMPAIGN_BUDGET
建议详情位于 campaign_budget_recommendation
字段中,并封装在 CampaignBudgetRecommendation
对象中。
在 recommendation
联合字段中查找所有特定于推荐的字段。
建议影响
某些建议类型会填充建议的 impact
字段。RecommendationImpact
包含对应用建议对账号效果的影响的估算值。impact.base_metrics
和 impact.potential_metrics
字段中提供了以下推荐指标:
impressions
clicks
cost_micros
conversions
all_conversions
video_views
代码示例
以下示例代码会从账号中检索类型为 KEYWORD
的所有可用和已关闭的建议,并输出其中的部分详细信息:
Java
try (GoogleAdsServiceClient googleAdsServiceClient = googleAdsClient.getLatestVersion().createGoogleAdsServiceClient(); RecommendationServiceClient recommendationServiceClient = googleAdsClient.getLatestVersion().createRecommendationServiceClient()) { // Creates a query that retrieves keyword recommendations. String query = "SELECT recommendation.resource_name, " + " recommendation.campaign, " + " recommendation.keyword_recommendation " + "FROM recommendation " + "WHERE recommendation.type = KEYWORD"; // Constructs the SearchGoogleAdsStreamRequest. SearchGoogleAdsStreamRequest request = SearchGoogleAdsStreamRequest.newBuilder() .setCustomerId(Long.toString(customerId)) .setQuery(query) .build(); // Issues the search stream request to detect keyword recommendations that exist for the // customer account. ServerStream<SearchGoogleAdsStreamResponse> stream = googleAdsServiceClient.searchStreamCallable().call(request); // Creates apply operations for all the recommendations found. List<ApplyRecommendationOperation> applyRecommendationOperations = new ArrayList<>(); for (SearchGoogleAdsStreamResponse response : stream) { for (GoogleAdsRow googleAdsRow : response.getResultsList()) { Recommendation recommendation = googleAdsRow.getRecommendation(); System.out.printf( "Keyword recommendation '%s' was found for campaign '%s'%n", recommendation.getResourceName(), recommendation.getCampaign()); KeywordInfo keyword = recommendation.getKeywordRecommendation().getKeyword(); System.out.printf("\tKeyword = '%s'%n", keyword.getText()); System.out.printf("\tMatch type = '%s'%n", keyword.getMatchType()); // Creates an ApplyRecommendationOperation that will apply this recommendation, and adds // it to the list of operations. applyRecommendationOperations.add(buildRecommendationOperation(recommendation)); } }
C#
// Get the GoogleAdsServiceClient. GoogleAdsServiceClient googleAdsService = client.GetService( Services.V18.GoogleAdsService); // Creates a query that retrieves keyword recommendations. string query = "SELECT recommendation.resource_name, " + "recommendation.campaign, recommendation.keyword_recommendation " + "FROM recommendation WHERE " + $"recommendation.type = KEYWORD"; List<ApplyRecommendationOperation> operations = new List<ApplyRecommendationOperation>(); try { // Issue a search request. googleAdsService.SearchStream(customerId.ToString(), query, delegate (SearchGoogleAdsStreamResponse resp) { Console.WriteLine($"Found {resp.Results.Count} recommendations."); foreach (GoogleAdsRow googleAdsRow in resp.Results) { Recommendation recommendation = googleAdsRow.Recommendation; Console.WriteLine("Keyword recommendation " + $"{recommendation.ResourceName} was found for campaign " + $"{recommendation.Campaign}."); if (recommendation.KeywordRecommendation != null) { KeywordInfo keyword = recommendation.KeywordRecommendation.Keyword; Console.WriteLine($"Keyword = {keyword.Text}, type = " + "{keyword.MatchType}"); } operations.Add( BuildApplyRecommendationOperation(recommendation.ResourceName) ); } } ); } catch (GoogleAdsException e) { Console.WriteLine("Failure:"); Console.WriteLine($"Message: {e.Message}"); Console.WriteLine($"Failure: {e.Failure}"); Console.WriteLine($"Request ID: {e.RequestId}"); throw; }
PHP
$googleAdsServiceClient = $googleAdsClient->getGoogleAdsServiceClient(); // Creates a query that retrieves keyword recommendations. $query = 'SELECT recommendation.resource_name, recommendation.campaign, ' . 'recommendation.keyword_recommendation ' . 'FROM recommendation ' . 'WHERE recommendation.type = KEYWORD '; // Issues a search request to detect keyword recommendations that exist for the // customer account. $response = $googleAdsServiceClient->search(SearchGoogleAdsRequest::build($customerId, $query)); $operations = []; // Iterates over all rows in all pages and prints the requested field values for // the recommendation in each row. foreach ($response->iterateAllElements() as $googleAdsRow) { /** @var GoogleAdsRow $googleAdsRow */ $recommendation = $googleAdsRow->getRecommendation(); printf( "Keyword recommendation with resource name '%s' was found for campaign " . "with resource name '%s':%s", $recommendation->getResourceName(), $recommendation->getCampaign(), PHP_EOL ); if (!is_null($recommendation->getKeywordRecommendation())) { $keyword = $recommendation->getKeywordRecommendation()->getKeyword(); printf( "\tKeyword = '%s'%s\ttype = '%s'%s", $keyword->getText(), PHP_EOL, KeywordMatchType::name($keyword->getMatchType()), PHP_EOL ); } // Creates an ApplyRecommendationOperation that will be used to apply this // recommendation, and adds it to the list of operations. $operations[] = self::buildRecommendationOperation($recommendation->getResourceName()); }
Python
googleads_service = client.get_service("GoogleAdsService") query = f""" SELECT recommendation.campaign, recommendation.keyword_recommendation FROM recommendation WHERE recommendation.type = KEYWORD""" # Detects keyword recommendations that exist for the customer account. response = googleads_service.search(customer_id=customer_id, query=query) operations = [] for row in response.results: recommendation = row.recommendation print( f"Keyword recommendation ('{recommendation.resource_name}') " f"was found for campaign '{recommendation.campaign}." ) keyword = recommendation.keyword_recommendation.keyword print( f"\tKeyword = '{keyword.text}'\n" f"\tType = '{keyword.match_type}'" ) # Create an ApplyRecommendationOperation that will be used to apply # this recommendation, and add it to the list of operations. operations.append( build_recommendation_operation(client, recommendation.resource_name) )
Ruby
query = <<~QUERY SELECT recommendation.resource_name, recommendation.campaign, recommendation.keyword_recommendation FROM recommendation WHERE recommendation.type = KEYWORD QUERY google_ads_service = client.service.google_ads response = google_ads_service.search( customer_id: customer_id, query: query, ) operations = response.each do |row| recommendation = row.recommendation puts "Keyword recommendation ('#{recommendation.resource_name}') was found for "\ "campaign '#{recommendation.campaign}'." if recommendation.keyword_recommendation keyword = recommendation.keyword_recommendation.keyword puts "\tKeyword = '#{keyword.text}'" puts "\ttype = '#{keyword.match_type}'" end build_recommendation_operation(client, recommendation.resource_name) end
Perl
# Create the search query. my $search_query = "SELECT recommendation.resource_name, " . "recommendation.campaign, recommendation.keyword_recommendation " . "FROM recommendation " . "WHERE recommendation.type = KEYWORD"; # Get the GoogleAdsService. my $google_ads_service = $api_client->GoogleAdsService(); my $search_stream_handler = Google::Ads::GoogleAds::Utils::SearchStreamHandler->new({ service => $google_ads_service, request => { customerId => $customer_id, query => $search_query }}); # Create apply operations for all the recommendations found. my $apply_recommendation_operations = (); $search_stream_handler->process_contents( sub { my $google_ads_row = shift; my $recommendation = $google_ads_row->{recommendation}; printf "Keyword recommendation '%s' was found for campaign '%s'.\n", $recommendation->{resourceName}, $recommendation->{campaign}; my $keyword = $recommendation->{keywordRecommendation}{keyword}; printf "\tKeyword = '%s'\n", $keyword->{text}; printf "\tMatch type = '%s'\n", $keyword->{matchType}; # Creates an ApplyRecommendationOperation that will apply this recommendation, and adds # it to the list of operations. push @$apply_recommendation_operations, build_recommendation_operation($recommendation); });
采取行动
您可以应用或忽略任何检索到的建议。
这些建议可能每天更改一次,甚至一天更改多次,具体取决于建议类型。如果发生这种情况,建议对象的 resource_name
会在完成建议检索后过时。
您最好在检索后尽快根据建议采取行动。
采纳建议
您可以使用 RecommendationService
的 ApplyRecommendation
方法应用有效的或被拒绝的建议。
推荐类型可以有必需参数或可选参数。大多数建议都附带默认使用的推荐值。
并非所有建议类型都支持为账号设置自动采纳建议。不过,您可以针对 Google Ads API 完全支持的建议类型实现类似行为。如需了解详情,请参阅 DetectAndApplyRecommendations
代码示例。
使用 ApplyRecommendationOperation
的 apply_parameters
联合字段,可应用具有特定参数值的建议。每种合适的建议类型都有自己的字段。apply_parameters
字段中未列出的任何推荐类型都不会使用这些参数值。
代码示例
以下代码演示了如何构建 ApplyRecommendationOperation
,以及如何替换建议值(如果您想将其替换为自己的值)。
Java
/** Creates and returns an ApplyRecommendationOperation to apply the given recommendation. */ private ApplyRecommendationOperation buildRecommendationOperation(Recommendation recommendation) { // If you have a recommendation ID instead of a resource name, you can create a resource name // like this: // String resourceName = ResourceNames.recommendation(customerId, recommendationId); // Creates a builder to construct the operation. Builder operationBuilder = ApplyRecommendationOperation.newBuilder(); // Each recommendation type has optional parameters to override the recommended values. Below is // an example showing how to override a recommended ad when a TextAdRecommendation is applied. // operationBuilder.getTextAdBuilder().getAdBuilder().setResourceName("INSERT_AD_RESOURCE_NAME"); // Sets the operation's resource name to the resource name of the recommendation to apply. operationBuilder.setResourceName(recommendation.getResourceName()); return operationBuilder.build(); }
C#
private ApplyRecommendationOperation BuildApplyRecommendationOperation( string recommendationResourceName ) { // If you have a recommendation_id instead of the resource_name you can create a // resource name from it like this: // string recommendationResourceName = // ResourceNames.Recommendation(customerId, recommendationId) // Each recommendation type has optional parameters to override the recommended values. // This is an example to override a recommended ad when a TextAdRecommendation is // applied. // For details, please read // https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation. /* Ad overridingAd = new Ad() { Id = "INSERT_AD_ID_AS_LONG_HERE" }; applyRecommendationOperation.TextAd = new TextAdParameters() { Ad = overridingAd }; */ ApplyRecommendationOperation applyRecommendationOperation = new ApplyRecommendationOperation() { ResourceName = recommendationResourceName }; return applyRecommendationOperation; }
PHP
private static function buildRecommendationOperation( string $recommendationResourceName ): ApplyRecommendationOperation { // If you have a recommendation_id instead of the resource name, you can create a resource // name from it like this: /* $recommendationResourceName = ResourceNames::forRecommendation($customerId, $recommendationId); */ // Each recommendation type has optional parameters to override the recommended values. // This is an example to override a recommended ad when a TextAdRecommendation is applied. // For details, please read // https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation. /* $overridingAd = new Ad([ 'id' => 'INSERT_AD_ID_AS_INTEGER_HERE' ]); $applyRecommendationOperation->setTextAd(new TextAdParameters(['ad' => $overridingAd])); */ // Issues a mutate request to apply the recommendation. $applyRecommendationOperation = new ApplyRecommendationOperation(); $applyRecommendationOperation->setResourceName($recommendationResourceName); return $applyRecommendationOperation; }
Python
def build_recommendation_operation(client, recommendation): """Creates a ApplyRecommendationOperation to apply the given recommendation. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. recommendation: a resource name for the recommendation to be applied. """ # If you have a recommendation ID instead of a resource name, you can create # a resource name like this: # # googleads_service = client.get_service("GoogleAdsService") # resource_name = googleads_service.recommendation_path( # customer_id, recommendation.id # ) operation = client.get_type("ApplyRecommendationOperation") # Each recommendation type has optional parameters to override the # recommended values. Below is an example showing how to override a # recommended ad when a TextAdRecommendation is applied. # # operation.text_ad.ad.resource_name = "INSERT_AD_RESOURCE_NAME" # # For more details, see: # https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation#apply_parameters operation.resource_name = recommendation return operation
Ruby
def build_recommendation_operation(client, recommendation) # If you have a recommendation_id instead of the resource_name # you can create a resource name from it like this: # recommendation_resource = # client.path.recommendation(customer_id, recommendation_id) operations = client.operation.apply_recommendation operations.resource_name = recommendation_resource # Each recommendation type has optional parameters to override the recommended # values. This is an example to override a recommended ad when a # TextAdRecommendation is applied. # # text_ad_parameters = client.resource.text_ad_parameters do |tap| # tap.ad = client.resource.ad do |ad| # ad.id = "INSERT_AD_ID_AS_INTEGER_HERE" # end # end # operation.text_ad = text_ad_parameters # # For more details, see: # https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation#apply_parameters return operation end
Perl
sub build_recommendation_operation { my ($recommendation) = @_; # If you have a recommendation ID instead of a resource name, you can create a resource # name like this: # my $recommendation_resource_name = # Google::Ads::GoogleAds::V18::Utils::ResourceNames::recommendation( # $customer_id, $recommendation_id); # Each recommendation type has optional parameters to override the recommended values. # Below is an example showing how to override a recommended ad when a TextAdRecommendation # is applied. # my $overriding_ad = Google::Ads::GoogleAds::V18::Resources::Ad->new({ # id => "INSERT_AD_ID_AS_INTEGER_HERE" # }); # my $text_ad_parameters = # Google::Ads::GoogleAds::V18::Services::RecommendationService::TextAdParameters # ->new({ad => $overriding_ad}); # $apply_recommendation_operation->{textAd} = $text_ad_parameters; # Create an apply recommendation operation. my $apply_recommendation_operation = Google::Ads::GoogleAds::V18::Services::RecommendationService::ApplyRecommendationOperation ->new({ resourceName => $recommendation->{resourceName}}); return $apply_recommendation_operation; }
以下示例调用 ApplyRecommendation
,发送在上一个代码中创建的应用建议操作。
Java
// Issues a mutate request to apply the recommendations. ApplyRecommendationResponse applyRecommendationsResponse = recommendationServiceClient.applyRecommendation( Long.toString(customerId), applyRecommendationOperations); for (ApplyRecommendationResult applyRecommendationResult : applyRecommendationsResponse.getResultsList()) { System.out.printf( "Applied recommendation with resource name: '%s'.%n", applyRecommendationResult.getResourceName()); }
C#
private void ApplyRecommendation(GoogleAdsClient client, long customerId, List<ApplyRecommendationOperation> operations) { // Get the RecommendationServiceClient. RecommendationServiceClient recommendationService = client.GetService( Services.V18.RecommendationService); ApplyRecommendationRequest applyRecommendationRequest = new ApplyRecommendationRequest() { CustomerId = customerId.ToString(), }; applyRecommendationRequest.Operations.AddRange(operations); ApplyRecommendationResponse response = recommendationService.ApplyRecommendation(applyRecommendationRequest); foreach (ApplyRecommendationResult result in response.Results) { Console.WriteLine("Applied a recommendation with resource name: " + result.ResourceName); } }
PHP
private static function applyRecommendations( GoogleAdsClient $googleAdsClient, int $customerId, array $operations ): void { // Issues a mutate request to apply the recommendations. $recommendationServiceClient = $googleAdsClient->getRecommendationServiceClient(); $response = $recommendationServiceClient->applyRecommendation( ApplyRecommendationRequest::build($customerId, $operations) ); foreach ($response->getResults() as $appliedRecommendation) { /** @var Recommendation $appliedRecommendation */ printf( "Applied a recommendation with resource name: '%s'.%s", $appliedRecommendation->getResourceName(), PHP_EOL ); } }
Python
def apply_recommendations(client, customer_id, operations): """Applies a batch of recommendations. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. operations: a list of ApplyRecommendationOperation messages. """ # Issues a mutate request to apply the recommendations. recommendation_service = client.get_service("RecommendationService") response = recommendation_service.apply_recommendation( customer_id=customer_id, operations=operations ) for result in response.results: print( "Applied a recommendation with resource name: " f"'{result[0].resource_name}'." )
Ruby
def apply_recommendations(client, customer_id, operations) # Issues a mutate request to apply the recommendation. recommendation_service = client.service.recommendation response = recommendation_service.apply_recommendation( customer_id: customer_id, operations: [operations], ) response.results.each do |applied_recommendation| puts "Applied recommendation with resource name: '#{applied_recommendation.resource_name}'." end end
Perl
# Issue a mutate request to apply the recommendations. my $apply_recommendation_response = $api_client->RecommendationService()->apply({ customerId => $customer_id, operations => $apply_recommendation_operations }); foreach my $result (@{$apply_recommendation_response->{results}}) { printf "Applied recommendation with resource name: '%s'.\n", $result->{resourceName}; }
观看以下视频了解详情
应用参数
批量
错误
测试
拒绝建议
您可以使用 RecommendationService
忽略建议。代码结构与应用建议类似,但您需要使用 DismissRecommendationOperation
和 RecommendationService.DismissRecommendation
。
观看以下视频了解详情
批量
错误
测试
自动采纳建议
您可以使用 RecommendationSubscriptionService
自动采纳特定类型的建议。
如需订阅特定类型的推荐,请创建一个 RecommendationSubscription
对象,将 type
字段设置为受支持的推荐类型之一,并将 status
字段设置为 ENABLED
。
订阅支持的推荐类型
ENHANCED_CPC_OPT_IN
KEYWORD
KEYWORD_MATCH_TYPE
LOWER_TARGET_ROAS
MAXIMIZE_CLICKS_OPT_IN
OPTIMIZE_AD_ROTATION
RAISE_TARGET_CPA
RESPONSIVE_SEARCH_AD
RESPONSIVE_SEARCH_AD_IMPROVE_AD_STRENGTH
SEARCH_PARTNERS_OPT_IN
SEARCH_PLUS_OPT_IN
SET_TARGET_CPA
SET_TARGET_ROAS
TARGET_CPA_OPT_IN
TARGET_ROAS_OPT_IN
USE_BROAD_MATCH_KEYWORD
检索订阅
如需获取有关账号的推荐订阅的信息,请查询 recommendation_subscription
资源。
如需查看自动应用的更改,请查询 change_event
资源,并将 change_event.client_type
过滤为 GOOGLE_ADS_RECOMMENDATIONS_SUBSCRIPTION
。
在广告系列制作过程中提供的建议
您可以使用 RecommendationService.GenerateRecommendationsRequest
在制作广告系列时针对一组给定的建议类型生成建议。
GenerateRecommendations
接受以下输入:客户 ID、广告渠道类型(必须为 SEARCH
或 PERFORMANCE_MAX
)、要生成的推荐类型列表,以及根据指定类型而异的各种数据点。它会根据您提供的数据输出 Recommendation
对象的列表。如果没有足够的数据来为请求的 recommendation_types
生成建议,或者广告系列已处于建议状态,则结果集中不会包含针对该类型的建议。请确保您的应用能够处理为请求的推荐类型未返回任何推荐的情况。
下表介绍了 GenerateRecommendations
支持的建议类型,以及您必须提供哪些字段才能收到该类型的建议。最佳实践是,在收集与请求的推荐类型相关的所有信息后发送 GenerateRecommendations
请求。如需详细了解必需字段和可选字段(包括嵌套字段),请参阅参考文档。
RecommendationType | 必填字段 | 可选字段 |
---|---|---|
CAMPAIGN_BUDGET (从 v18 开始) |
对于搜索广告系列和效果最大化广告系列,以下字段均为必填字段:
|
|
KEYWORD |
|
|
MAXIMIZE_CLICKS_OPT_IN |
|
|
MAXIMIZE_CONVERSIONS_OPT_IN |
|
|
MAXIMIZE_CONVERSION_VALUE_OPT_IN |
|
|
SET_TARGET_CPA |
|
|
SET_TARGET_ROAS |
|
|
SITELINK_ASSET
注意:返回的 SitelinkAssetRecommendation 对象将包含空列表。如果 GenerateRecommendations 响应包含 SitelinkAssetRecommendation ,则可以将其视为向广告系列添加至少一个站内链接素材资源的信号。 |
|
|
TARGET_CPA_OPT_IN |
|
|
TARGET_ROAS_OPT_IN |
|
使用流程示例
假设贵公司是一家广告代理机构,为用户提供广告系列制作工作流,并且您希望在此流程中向用户提供建议。您可以使用 GenerateRecommendationsRequest
按需生成建议,并将这些建议纳入到广告系列制作界面中。
使用流程可能如下所示:
用户前来您的应用以制作效果最大化广告系列。
在广告系列制作流程中,用户会提供一些初始信息。例如,他们提供详细信息来构建单个
SitelinkAsset
,并选择TARGET_SPEND
作为智能出价策略。您发送一个
GenerateRecommendationsRequest
,用于设置以下字段:campaign_sitelink_count
:设为1
,即进行中的广告系列中的站内链接素材资源的数量。bidding_info
:将嵌套的bidding_strategy_type
字段设置为TARGET_SPEND
。conversion_tracking_status
:设置为此客户的ConversionTrackingStatus
。如需有关如何检索此字段的指导,请参阅转化管理的入门指南。recommendation_types
:设置为[SITELINK_ASSET, MAXIMIZE_CLICKS_OPT_IN]
。advertising_channel_type
:设置为PERFORMANCE_MAX
。customer_id
:设置为创建广告系列的客户的 ID。
您可以采用
GenerateRecommendationsResponse
中的建议(在本例中,是SitelinkAssetRecommendation
和MaximizeClicksOptInRecommendation
),并在广告系列制作界面中显示这些建议,以便向用户推荐。如果用户接受建议,那么在用户完成广告系列构建流程后,您就可以将建议纳入广告系列制作请求中。