공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
ee.Classifier.minimumDistance
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
지정된 거리 측정항목의 최소 거리 분류기를 만듭니다. CLASSIFICATION 모드에서는 가장 가까운 클래스가 반환됩니다. REGRESSION 모드에서는 가장 가까운 클래스 중심까지의 거리가 반환됩니다. RAW 모드에서는 모든 클래스 중심까지의 거리가 반환됩니다.
사용 | 반환 값 |
---|
ee.Classifier.minimumDistance(metric, kNearest) | 분류 기준 |
인수 | 유형 | 세부정보 |
---|
metric | 문자열, 기본값: 'euclidean' | 사용할 거리 측정항목입니다. 옵션은 다음과 같습니다.
- 'euclidean': 정규화되지 않은 클래스 평균으로부터의 유클리드 거리입니다.
- 'cosine' - 정규화되지 않은 클래스 평균에서 스펙트럼 각도입니다.
- 'mahalanobis' - 클래스 평균에서의 마할라노비스 거리입니다.
- 'manhattan' - 정규화되지 않은 클래스 평균으로부터의 맨해튼 거리입니다.
|
kNearest | 정수, 기본값: 1 | 1보다 크면 출력 모드 설정에 따라 가장 가까운 k개 이웃 또는 거리 배열이 결과에 포함됩니다. kNearest가 총 클래스 수보다 크면 클래스 수와 동일하게 설정됩니다. |
예
코드 편집기 (JavaScript)
// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
.select('B.*');
// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');
// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();
// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
numPoints: 100,
classBand: label,
region: roi,
scale: 10,
geometries: true
});
// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');
// Train a minimum distance classifier (Mahalanobis distance metric) from
// the training sample.
var trainedClassifier = ee.Classifier.minimumDistance('mahalanobis').train({
features: trainingSample,
classProperty: label,
inputProperties: img.bandNames()
});
// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());
// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());
// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());
// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);
// Add the layers to the map.
var classVis = {
min: 0,
max: 10,
palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);
Python 설정
Python API 및 대화형 개발을 위한 geemap
사용에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')
# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')
# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()
# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)
# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')
# Train a minimum distance classifier (Mahalanobis distance metric) from
# the training sample.
trained_classifier = ee.Classifier.minimumDistance('mahalanobis').train(
features=training_sample,
classProperty=label,
inputProperties=img.bandNames(),
)
# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())
# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())
# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())
# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)
# Add the layers to the map.
class_vis = {
'min': 0,
'max': 10,
'palette': [
'006400',
'ffbb22',
'ffff4c',
'f096ff',
'fa0000',
'b4b4b4',
'f0f0f0',
'0064c8',
'0096a0',
'00cf75',
'fae6a0',
],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
validation_sample, {'color': 'white'}, 'Validation sample', False
)
m
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-25(UTC)
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[[["\u003cp\u003eCreates a classifier using the minimum distance to class centers based on a specified distance metric ('euclidean', 'cosine', 'mahalanobis', or 'manhattan').\u003c/p\u003e\n"],["\u003cp\u003eOffers three output modes: CLASSIFICATION (returns nearest class), REGRESSION (returns distance to nearest class), and RAW (returns distances to all class centers).\u003c/p\u003e\n"],["\u003cp\u003eOptionally considers the 'kNearest' neighbors, returning an array of nearest neighbors or distances if 'kNearest' is greater than 1.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.minimumDistance\n\nCreates a minimum distance classifier for the given distance metric. In CLASSIFICATION mode, the nearest class is returned. In REGRESSION mode, the distance to the nearest class center is returned. In RAW mode, the distance to every class center is returned.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------|------------|\n| `ee.Classifier.minimumDistance(`*metric* `, `*kNearest*`)` | Classifier |\n\n| Argument | Type | Details |\n|------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `metric` | String, default: \"euclidean\" | The distance metric to use. Options are: - 'euclidean' - Euclidean distance from the unnormalized class mean. - 'cosine' - spectral angle from the unnormalized class mean. - 'mahalanobis' - Mahalanobis distance from the class mean. - 'manhattan' - Manhattan distance from the unnormalized class mean. |\n| `kNearest` | Integer, default: 1 | If greater than 1, the result will contain an array of the k nearest neighbors or distances, based on the output mode setting. If kNearest is greater than the total number of classes, it will be set equal to the number of classes. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Sentinel-2 surface reflectance image, reflectance bands selected,\n// serves as the source for training and prediction in this contrived example.\nvar img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n .select('B.*');\n\n// ESA WorldCover land cover map, used as label source in classifier training.\nvar lc = ee.Image('ESA/WorldCover/v100/2020');\n\n// Remap the land cover class values to a 0-based sequential series.\nvar classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];\nvar remapValues = ee.List.sequence(0, 10);\nvar label = 'lc';\nlc = lc.remap(classValues, remapValues).rename(label).toByte();\n\n// Add land cover as a band of the reflectance image and sample 100 pixels at\n// 10 m scale from each land cover class within a region of interest.\nvar roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);\nvar sample = img.addBands(lc).stratifiedSample({\n numPoints: 100,\n classBand: label,\n region: roi,\n scale: 10,\n geometries: true\n});\n\n// Add a random value field to the sample and use it to approximately split 80%\n// of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn();\nvar trainingSample = sample.filter('random \u003c= 0.8');\nvar validationSample = sample.filter('random \u003e 0.8');\n\n// Train a minimum distance classifier (Mahalanobis distance metric) from\n// the training sample.\nvar trainedClassifier = ee.Classifier.minimumDistance('mahalanobis').train({\n features: trainingSample,\n classProperty: label,\n inputProperties: img.bandNames()\n});\n\n// Get information about the trained classifier.\nprint('Results of trained classifier', trainedClassifier.explain());\n\n// Get a confusion matrix and overall accuracy for the training sample.\nvar trainAccuracy = trainedClassifier.confusionMatrix();\nprint('Training error matrix', trainAccuracy);\nprint('Training overall accuracy', trainAccuracy.accuracy());\n\n// Get a confusion matrix and overall accuracy for the validation sample.\nvalidationSample = validationSample.classify(trainedClassifier);\nvar validationAccuracy = validationSample.errorMatrix(label, 'classification');\nprint('Validation error matrix', validationAccuracy);\nprint('Validation accuracy', validationAccuracy.accuracy());\n\n// Classify the reflectance image from the trained classifier.\nvar imgClassified = img.classify(trainedClassifier);\n\n// Add the layers to the map.\nvar classVis = {\n min: 0,\n max: 10,\n palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',\n 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']\n};\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');\nMap.addLayer(lc, classVis, 'lc');\nMap.addLayer(imgClassified, classVis, 'Classified');\nMap.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);\nMap.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);\nMap.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Sentinel-2 surface reflectance image, reflectance bands selected,\n# serves as the source for training and prediction in this contrived example.\nimg = ee.Image(\n 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'\n).select('B.*')\n\n# ESA WorldCover land cover map, used as label source in classifier training.\nlc = ee.Image('ESA/WorldCover/v100/2020')\n\n# Remap the land cover class values to a 0-based sequential series.\nclass_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]\nremap_values = ee.List.sequence(0, 10)\nlabel = 'lc'\nlc = lc.remap(class_values, remap_values).rename(label).toByte()\n\n# Add land cover as a band of the reflectance image and sample 100 pixels at\n# 10 m scale from each land cover class within a region of interest.\nroi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)\nsample = img.addBands(lc).stratifiedSample(\n numPoints=100, classBand=label, region=roi, scale=10, geometries=True\n)\n\n# Add a random value field to the sample and use it to approximately split 80%\n# of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn()\ntraining_sample = sample.filter('random \u003c= 0.8')\nvalidation_sample = sample.filter('random \u003e 0.8')\n\n# Train a minimum distance classifier (Mahalanobis distance metric) from\n# the training sample.\ntrained_classifier = ee.Classifier.minimumDistance('mahalanobis').train(\n features=training_sample,\n classProperty=label,\n inputProperties=img.bandNames(),\n)\n\n# Get information about the trained classifier.\ndisplay('Results of trained classifier', trained_classifier.explain())\n\n# Get a confusion matrix and overall accuracy for the training sample.\ntrain_accuracy = trained_classifier.confusionMatrix()\ndisplay('Training error matrix', train_accuracy)\ndisplay('Training overall accuracy', train_accuracy.accuracy())\n\n# Get a confusion matrix and overall accuracy for the validation sample.\nvalidation_sample = validation_sample.classify(trained_classifier)\nvalidation_accuracy = validation_sample.errorMatrix(label, 'classification')\ndisplay('Validation error matrix', validation_accuracy)\ndisplay('Validation accuracy', validation_accuracy.accuracy())\n\n# Classify the reflectance image from the trained classifier.\nimg_classified = img.classify(trained_classifier)\n\n# Add the layers to the map.\nclass_vis = {\n 'min': 0,\n 'max': 10,\n 'palette': [\n '006400',\n 'ffbb22',\n 'ffff4c',\n 'f096ff',\n 'fa0000',\n 'b4b4b4',\n 'f0f0f0',\n '0064c8',\n '0096a0',\n '00cf75',\n 'fae6a0',\n ],\n}\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'\n)\nm.add_layer(lc, class_vis, 'lc')\nm.add_layer(img_classified, class_vis, 'Classified')\nm.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)\nm.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)\nm.add_layer(\n validation_sample, {'color': 'white'}, 'Validation sample', False\n)\nm\n```"]]