Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.Classifier.smileKNN
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Crea un classificatore k-NN vuoto.
L'algoritmo dei k-vicini più prossimi (k-NN) è un metodo per classificare gli oggetti in base al voto della maggioranza dei vicini, con l'oggetto assegnato alla classe più comune tra i suoi k vicini più prossimi (k è un numero intero positivo, in genere piccolo e dispari).
Utilizzo | Resi |
---|
ee.Classifier.smileKNN(k, searchMethod, metric) | Classificatore |
Argomento | Tipo | Dettagli |
---|
k | Numero intero, valore predefinito: 1 | Il numero di vicini per la classificazione. |
searchMethod | Stringa, valore predefinito: "AUTO" | Metodo di ricerca. I seguenti valori sono validi: [AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE].
AUTO sceglierà tra KD_TREE e COVER_TREE a seconda del conteggio delle dimensioni. I risultati possono variare tra i diversi metodi di ricerca per i pareggi di distanza e i valori di probabilità. Poiché le prestazioni e i risultati possono variare, consulta la documentazione di SMILE e altre fonti. |
metric | Stringa, valore predefinito: "EUCLIDEAN" | La metrica di distanza da utilizzare. NOTA: KD_TREE (e AUTO per dimensioni ridotte) non utilizzerà la metrica selezionata. Le opzioni sono:
'EUCLIDEAN' - Distanza euclidea.
'MAHALANOBIS' - Distanza di Mahalanobis.
"MANHATTAN" - Distanza di Manhattan.
'BRAYCURTIS' - Distanza di Bray-Curtis. |
Esempi
Editor di codice (JavaScript)
// Cloud masking for Landsat 8.
function maskL8sr(image) {
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Map the function over one year of data.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(maskL8sr);
// Make a median composite.
var composite = collection.median();
// Demonstration labels.
var labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
// Use these bands for classification.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions(
{collection: labels, properties: [classProperty], scale: 30});
// Train a kNN classifier.
var classifier = ee.Classifier.smileKNN(5).train({
features: training,
classProperty: classProperty,
});
// Classify the composite.
var classified = composite.classify(classifier);
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
# Cloud masking for Landsat 8.
def mask_l8_sr(image):
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Map the function over one year of data.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(mask_l8_sr)
)
# Make a median composite.
composite = collection.median()
# Demonstration labels.
labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
# Use these bands for classification.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
# The name of the property on the points storing the class label.
class_property = 'landcover'
# Sample the composite to generate training data. Note that the
# class label is stored in the 'landcover' property.
training = composite.select(bands).sampleRegions(
collection=labels, properties=[class_property], scale=30
)
# Train a kNN classifier.
classifier = ee.Classifier.smileKNN(5).train(
features=training, classProperty=class_property
)
# Classify the composite.
classified = composite.classify(classifier)
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}
)
m
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003eCreates a k-Nearest Neighbors (k-NN) classifier using the SMILE machine learning library within Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe classifier is trained using labeled data and can be applied to classify images based on the proximity of pixel values to known classes.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the number of neighbors (k), search method, and distance metric for the k-NN algorithm.\u003c/p\u003e\n"],["\u003cp\u003eIncludes JavaScript and Python examples demonstrating classifier training and image classification using Landsat 8 data.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.smileKNN\n\nCreates an empty k-NN classifier.\n\n\u003cbr /\u003e\n\nThe k-nearest neighbor algorithm (k-NN) is a method for classifying objects by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically small, typically odd).\n\n| Usage | Returns |\n|-----------------------------------------------------------------|------------|\n| `ee.Classifier.smileKNN(`*k* `, `*searchMethod* `, `*metric*`)` | Classifier |\n\n| Argument | Type | Details |\n|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `k` | Integer, default: 1 | The number of neighbors for classification. |\n| `searchMethod` | String, default: \"AUTO\" | Search method. The following are valid \\[AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE\\]. AUTO will choose between KD_TREE and COVER_TREE depending on the dimension count. Results may vary between the different search methods for distance ties and probability values. Since performance and results may vary consult with SMILE's documentation and other literature. |\n| `metric` | String, default: \"EUCLIDEAN\" | The distance metric to use. NOTE: KD_TREE (and AUTO for low dimensions) will not use the metric selected. Options are: 'EUCLIDEAN' - Euclidean distance. 'MAHALANOBIS' - Mahalanobis distance. 'MANHATTAN' - Manhattan distance. 'BRAYCURTIS' - Bray-Curtis distance. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Cloud masking for Landsat 8.\nfunction maskL8sr(image) {\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Replace the original bands with the scaled ones and apply the masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Map the function over one year of data.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(maskL8sr);\n\n// Make a median composite.\nvar composite = collection.median();\n\n// Demonstration labels.\nvar labels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n// Use these bands for classification.\nvar bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];\n// The name of the property on the points storing the class label.\nvar classProperty = 'landcover';\n\n// Sample the composite to generate training data. Note that the\n// class label is stored in the 'landcover' property.\nvar training = composite.select(bands).sampleRegions(\n {collection: labels, properties: [classProperty], scale: 30});\n\n// Train a kNN classifier.\nvar classifier = ee.Classifier.smileKNN(5).train({\n features: training,\n classProperty: classProperty,\n});\n\n// Classify the composite.\nvar classified = composite.classify(classifier);\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Cloud masking for Landsat 8.\ndef mask_l8_sr(image):\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Map the function over one year of data.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(mask_l8_sr)\n)\n\n# Make a median composite.\ncomposite = collection.median()\n\n# Demonstration labels.\nlabels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n# Use these bands for classification.\nbands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']\n# The name of the property on the points storing the class label.\nclass_property = 'landcover'\n\n# Sample the composite to generate training data. Note that the\n# class label is stored in the 'landcover' property.\ntraining = composite.select(bands).sampleRegions(\n collection=labels, properties=[class_property], scale=30\n)\n\n# Train a kNN classifier.\nclassifier = ee.Classifier.smileKNN(5).train(\n features=training, classProperty=class_property\n)\n\n# Classify the composite.\nclassified = composite.classify(classifier)\n\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}\n)\nm\n```"]]