ee.Classifier.smileRandomForest
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
יוצרת מסווג ריק של יער אקראי.
שימוש | החזרות |
---|
ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed) | מסווג |
ארגומנט | סוג | פרטים |
---|
numberOfTrees | מספר שלם | מספר עצי ההחלטה שרוצים ליצור. |
variablesPerSplit | מספר שלם, ברירת מחדל: null | מספר המשתנים לכל פיצול. אם לא צוין ערך, המערכת משתמשת בשורש הריבועי של מספר המשתנים. |
minLeafPopulation | מספר שלם, ברירת מחדל: 1 | ייווצרו רק צמתים שקבוצת האימון שלהם מכילה לפחות את מספר הנקודות הזה. |
bagFraction | מספר ממשי (float), ברירת המחדל: 0.5 | החלק היחסי של הקלט לתיק לכל עץ. |
maxNodes | מספר שלם, ברירת מחדל: null | המספר המקסימלי של צמתי עלים בכל עץ. אם לא מציינים מגבלה, ברירת המחדל היא ללא מגבלה. |
seed | מספר שלם, ברירת מחדל: 0 | ערך הבסיס לארגון בסדר אקראי. |
דוגמאות
עורך הקוד (JavaScript)
// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
.select('B.*');
// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');
// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();
// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
numPoints: 100,
classBand: label,
region: roi,
scale: 10,
geometries: true
});
// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');
// Train a 10-tree random forest classifier from the training sample.
var trainedClassifier = ee.Classifier.smileRandomForest(10).train({
features: trainingSample,
classProperty: label,
inputProperties: img.bandNames()
});
// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());
// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());
// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());
// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);
// Add the layers to the map.
var classVis = {
min: 0,
max: 10,
palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')
# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')
# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()
# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)
# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')
# Train a 10-tree random forest classifier from the training sample.
trained_classifier = ee.Classifier.smileRandomForest(10).train(
features=training_sample,
classProperty=label,
inputProperties=img.bandNames(),
)
# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())
# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())
# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())
# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)
# Add the layers to the map.
class_vis = {
'min': 0,
'max': 10,
'palette': [
'006400',
'ffbb22',
'ffff4c',
'f096ff',
'fa0000',
'b4b4b4',
'f0f0f0',
'0064c8',
'0096a0',
'00cf75',
'fae6a0',
],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
validation_sample, {'color': 'white'}, 'Validation sample', False
)
m
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003eCreates a Random Forest classifier using the SMILE implementation.\u003c/p\u003e\n"],["\u003cp\u003eOffers parameters to control the number of trees, variables per split, minimum leaf population, bag fraction, maximum nodes, and randomization seed.\u003c/p\u003e\n"],["\u003cp\u003eReturns an untrained classifier that needs to be trained using the \u003ccode\u003etrain()\u003c/code\u003e method with a FeatureCollection of labeled data.\u003c/p\u003e\n"],["\u003cp\u003eCommonly applied for land cover classification and other remote sensing image analysis tasks.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.smileRandomForest\n\nCreates an empty Random Forest classifier.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------|\n| `ee.Classifier.smileRandomForest(numberOfTrees, `*variablesPerSplit* `, `*minLeafPopulation* `, `*bagFraction* `, `*maxNodes* `, `*seed*`)` | Classifier |\n\n| Argument | Type | Details |\n|---------------------|------------------------|-----------------------------------------------------------------------------------------------------|\n| `numberOfTrees` | Integer | The number of decision trees to create. |\n| `variablesPerSplit` | Integer, default: null | The number of variables per split. If unspecified, uses the square root of the number of variables. |\n| `minLeafPopulation` | Integer, default: 1 | Only create nodes whose training set contains at least this many points. |\n| `bagFraction` | Float, default: 0.5 | The fraction of input to bag per tree. |\n| `maxNodes` | Integer, default: null | The maximum number of leaf nodes in each tree. If unspecified, defaults to no limit. |\n| `seed` | Integer, default: 0 | The randomization seed. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Sentinel-2 surface reflectance image, reflectance bands selected,\n// serves as the source for training and prediction in this contrived example.\nvar img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n .select('B.*');\n\n// ESA WorldCover land cover map, used as label source in classifier training.\nvar lc = ee.Image('ESA/WorldCover/v100/2020');\n\n// Remap the land cover class values to a 0-based sequential series.\nvar classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];\nvar remapValues = ee.List.sequence(0, 10);\nvar label = 'lc';\nlc = lc.remap(classValues, remapValues).rename(label).toByte();\n\n// Add land cover as a band of the reflectance image and sample 100 pixels at\n// 10 m scale from each land cover class within a region of interest.\nvar roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);\nvar sample = img.addBands(lc).stratifiedSample({\n numPoints: 100,\n classBand: label,\n region: roi,\n scale: 10,\n geometries: true\n});\n\n// Add a random value field to the sample and use it to approximately split 80%\n// of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn();\nvar trainingSample = sample.filter('random \u003c= 0.8');\nvar validationSample = sample.filter('random \u003e 0.8');\n\n// Train a 10-tree random forest classifier from the training sample.\nvar trainedClassifier = ee.Classifier.smileRandomForest(10).train({\n features: trainingSample,\n classProperty: label,\n inputProperties: img.bandNames()\n});\n\n// Get information about the trained classifier.\nprint('Results of trained classifier', trainedClassifier.explain());\n\n// Get a confusion matrix and overall accuracy for the training sample.\nvar trainAccuracy = trainedClassifier.confusionMatrix();\nprint('Training error matrix', trainAccuracy);\nprint('Training overall accuracy', trainAccuracy.accuracy());\n\n// Get a confusion matrix and overall accuracy for the validation sample.\nvalidationSample = validationSample.classify(trainedClassifier);\nvar validationAccuracy = validationSample.errorMatrix(label, 'classification');\nprint('Validation error matrix', validationAccuracy);\nprint('Validation accuracy', validationAccuracy.accuracy());\n\n// Classify the reflectance image from the trained classifier.\nvar imgClassified = img.classify(trainedClassifier);\n\n// Add the layers to the map.\nvar classVis = {\n min: 0,\n max: 10,\n palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',\n 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']\n};\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');\nMap.addLayer(lc, classVis, 'lc');\nMap.addLayer(imgClassified, classVis, 'Classified');\nMap.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);\nMap.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);\nMap.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Sentinel-2 surface reflectance image, reflectance bands selected,\n# serves as the source for training and prediction in this contrived example.\nimg = ee.Image(\n 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'\n).select('B.*')\n\n# ESA WorldCover land cover map, used as label source in classifier training.\nlc = ee.Image('ESA/WorldCover/v100/2020')\n\n# Remap the land cover class values to a 0-based sequential series.\nclass_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]\nremap_values = ee.List.sequence(0, 10)\nlabel = 'lc'\nlc = lc.remap(class_values, remap_values).rename(label).toByte()\n\n# Add land cover as a band of the reflectance image and sample 100 pixels at\n# 10 m scale from each land cover class within a region of interest.\nroi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)\nsample = img.addBands(lc).stratifiedSample(\n numPoints=100, classBand=label, region=roi, scale=10, geometries=True\n)\n\n# Add a random value field to the sample and use it to approximately split 80%\n# of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn()\ntraining_sample = sample.filter('random \u003c= 0.8')\nvalidation_sample = sample.filter('random \u003e 0.8')\n\n# Train a 10-tree random forest classifier from the training sample.\ntrained_classifier = ee.Classifier.smileRandomForest(10).train(\n features=training_sample,\n classProperty=label,\n inputProperties=img.bandNames(),\n)\n\n# Get information about the trained classifier.\ndisplay('Results of trained classifier', trained_classifier.explain())\n\n# Get a confusion matrix and overall accuracy for the training sample.\ntrain_accuracy = trained_classifier.confusionMatrix()\ndisplay('Training error matrix', train_accuracy)\ndisplay('Training overall accuracy', train_accuracy.accuracy())\n\n# Get a confusion matrix and overall accuracy for the validation sample.\nvalidation_sample = validation_sample.classify(trained_classifier)\nvalidation_accuracy = validation_sample.errorMatrix(label, 'classification')\ndisplay('Validation error matrix', validation_accuracy)\ndisplay('Validation accuracy', validation_accuracy.accuracy())\n\n# Classify the reflectance image from the trained classifier.\nimg_classified = img.classify(trained_classifier)\n\n# Add the layers to the map.\nclass_vis = {\n 'min': 0,\n 'max': 10,\n 'palette': [\n '006400',\n 'ffbb22',\n 'ffff4c',\n 'f096ff',\n 'fa0000',\n 'b4b4b4',\n 'f0f0f0',\n '0064c8',\n '0096a0',\n '00cf75',\n 'fae6a0',\n ],\n}\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'\n)\nm.add_layer(lc, class_vis, 'lc')\nm.add_layer(img_classified, class_vis, 'Classified')\nm.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)\nm.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)\nm.add_layer(\n validation_sample, {'color': 'white'}, 'Validation sample', False\n)\nm\n```"]]