Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Clusterer.wekaCascadeKMeans
Stay organized with collections
Save and categorize content based on your preferences.
Cascade simple k-means selects the best k according to the Calinski-Harabasz criterion. For more information see:
Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.
Usage | Returns | ee.Clusterer.wekaCascadeKMeans(minClusters, maxClusters, restarts, manual, init, distanceFunction, maxIterations) | Clusterer |
Argument | Type | Details | minClusters | Integer, default: 2 | Min number of clusters. |
maxClusters | Integer, default: 10 | Max number of clusters. |
restarts | Integer, default: 10 | Number of restarts. |
manual | Boolean, default: false | Manually select the number of clusters. |
init | Boolean, default: false | Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers). |
distanceFunction | String, default: "Euclidean" | Distance function to use. Options are: Euclidean and Manhattan. |
maxIterations | Integer, default: null | Maximum number of iterations for k-means. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-19 UTC.
[null,null,["Last updated 2024-09-19 UTC."],[[["\u003cp\u003eCascade simple k-means automatically determines the optimal number of clusters (k) within a specified range using the Calinski-Harabasz criterion.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the clustering process by defining the minimum and maximum number of clusters, the number of algorithm restarts, initialization methods, distance functions, and the maximum number of iterations.\u003c/p\u003e\n"],["\u003cp\u003eThis Weka-based clusterer offers flexibility by allowing users to either automatically or manually select the number of clusters for their analysis.\u003c/p\u003e\n"],["\u003cp\u003eThe underlying algorithm leverages either Euclidean or Manhattan distance metrics to measure similarity between data points for cluster assignments.\u003c/p\u003e\n"]]],[],null,["# ee.Clusterer.wekaCascadeKMeans\n\nCascade simple k-means selects the best k according to the Calinski-Harabasz criterion. For more information see:\n\n\u003cbr /\u003e\n\nCalinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaCascadeKMeans(`*minClusters* `, `*maxClusters* `, `*restarts* `, `*manual* `, `*init* `, `*distanceFunction* `, `*maxIterations*`)` | Clusterer |\n\n| Argument | Type | Details |\n|--------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `minClusters` | Integer, default: 2 | Min number of clusters. |\n| `maxClusters` | Integer, default: 10 | Max number of clusters. |\n| `restarts` | Integer, default: 10 | Number of restarts. |\n| `manual` | Boolean, default: false | Manually select the number of clusters. |\n| `init` | Boolean, default: false | Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers). |\n| `distanceFunction` | String, default: \"Euclidean\" | Distance function to use. Options are: Euclidean and Manhattan. |\n| `maxIterations` | Integer, default: null | Maximum number of iterations for k-means. |"]]