공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
ee.Clusterer.wekaLVQ
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
학습 벡터 양자화 알고리즘을 구현하는 클러스터러입니다. 자세한 내용은 다음을 참고하세요.
T. Kohonen, 'Learning Vector Quantization', The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.
사용 | 반환 값 |
---|
ee.Clusterer.wekaLVQ(numClusters, learningRate, epochs, normalizeInput) | 클러스터러 |
인수 | 유형 | 세부정보 |
---|
numClusters | 정수, 기본값: 7 | 클러스터 수입니다. |
learningRate | 부동 소수점 수, 기본값: 1 | 학습 알고리즘의 학습률입니다. 값은 0보다 크고 1보다 작거나 같아야 합니다. |
epochs | 정수, 기본값: 1000 | 학습 에포크 수입니다. 값은 1 이상이어야 합니다. |
normalizeInput | 불리언, 기본값: false | 속성 정규화를 건너뜁니다. |
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[[["\u003cp\u003eImplements the Learning Vector Quantization (LVQ) algorithm for clustering data.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify the desired number of clusters, learning rate, training epochs, and input normalization.\u003c/p\u003e\n"],["\u003cp\u003eBased on the Kohonen's work as described in "The Handbook of Brain Theory and Neural Networks".\u003c/p\u003e\n"],["\u003cp\u003eThe algorithm learns by adjusting cluster prototypes based on the input data during training epochs.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a Clusterer object that can be used to predict the cluster assignments for new data points.\u003c/p\u003e\n"]]],["The `ee.Clusterer.wekaLVQ` function implements the Learning Vector Quantization algorithm for clustering. It requires specifying the number of clusters (`numClusters`, default 7), the learning rate (`learningRate`, default 1, between 0 and 1), the number of training epochs (`epochs`, default 1000, at least 1), and whether to normalize the input attributes (`normalizeInput`, default false). The function returns a Clusterer object. The algorithm's details are described in a specific paper by T. Kohonen.\n"],null,["# ee.Clusterer.wekaLVQ\n\nA Clusterer that implements the Learning Vector Quantization algorithm. For more details, see:\n\n\u003cbr /\u003e\n\nT. Kohonen, \"Learning Vector Quantization\", The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.\n\n| Usage | Returns |\n|----------------------------------------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaLVQ(`*numClusters* `, `*learningRate* `, `*epochs* `, `*normalizeInput*`)` | Clusterer |\n\n| Argument | Type | Details |\n|------------------|-------------------------|------------------------------------------------------------------------------------------------------|\n| `numClusters` | Integer, default: 7 | The number of clusters. |\n| `learningRate` | Float, default: 1 | The learning rate for the training algorithm. Value should be greater than 0 and less or equal to 1. |\n| `epochs` | Integer, default: 1000 | Number of training epochs. Value should be greater than or equal to 1. |\n| `normalizeInput` | Boolean, default: false | Skip normalizing the attributes. |"]]