公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.Clusterer.wekaLVQ
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
實作學習向量量化演算法的 Clusterer。相關詳情請參閱:
T. Kohonen,「Learning Vector Quantization」,The Handbook of Brain Theory and Neural Networks,第 2 版,MIT Press,2003 年,第 631-634 頁。
用量 | 傳回 |
---|
ee.Clusterer.wekaLVQ(numClusters, learningRate, epochs, normalizeInput) | 叢集器 |
引數 | 類型 | 詳細資料 |
---|
numClusters | 整數,預設值為 7 | 叢集數量。 |
learningRate | 浮點值,預設值為 1 | 訓練演算法的學習率。值應大於 0 且小於或等於 1。 |
epochs | 整數,預設值:1000 | 訓練週期數。值應大於或等於 1。 |
normalizeInput | 布林值,預設值為 false | 略過屬性正規化。 |
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003eImplements the Learning Vector Quantization (LVQ) algorithm for clustering data.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify the desired number of clusters, learning rate, training epochs, and input normalization.\u003c/p\u003e\n"],["\u003cp\u003eBased on the Kohonen's work as described in "The Handbook of Brain Theory and Neural Networks".\u003c/p\u003e\n"],["\u003cp\u003eThe algorithm learns by adjusting cluster prototypes based on the input data during training epochs.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a Clusterer object that can be used to predict the cluster assignments for new data points.\u003c/p\u003e\n"]]],["The `ee.Clusterer.wekaLVQ` function implements the Learning Vector Quantization algorithm for clustering. It requires specifying the number of clusters (`numClusters`, default 7), the learning rate (`learningRate`, default 1, between 0 and 1), the number of training epochs (`epochs`, default 1000, at least 1), and whether to normalize the input attributes (`normalizeInput`, default false). The function returns a Clusterer object. The algorithm's details are described in a specific paper by T. Kohonen.\n"],null,["# ee.Clusterer.wekaLVQ\n\nA Clusterer that implements the Learning Vector Quantization algorithm. For more details, see:\n\n\u003cbr /\u003e\n\nT. Kohonen, \"Learning Vector Quantization\", The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.\n\n| Usage | Returns |\n|----------------------------------------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaLVQ(`*numClusters* `, `*learningRate* `, `*epochs* `, `*normalizeInput*`)` | Clusterer |\n\n| Argument | Type | Details |\n|------------------|-------------------------|------------------------------------------------------------------------------------------------------|\n| `numClusters` | Integer, default: 7 | The number of clusters. |\n| `learningRate` | Float, default: 1 | The learning rate for the training algorithm. Value should be greater than 0 and less or equal to 1. |\n| `epochs` | Integer, default: 1000 | Number of training epochs. Value should be greater than or equal to 1. |\n| `normalizeInput` | Boolean, default: false | Skip normalizing the attributes. |"]]