הודעה: כל הפרויקטים הלא מסחריים שנרשמו לשימוש ב-Earth Engine לפני
15 באפריל 2025 חייבים
לאמת את הזכאות לשימוש לא מסחרי כדי לשמור על הגישה. אם לא תאמתו את החשבון עד 26 בספטמבר 2025, יכול להיות שהגישה שלכם תושעה.
ee.ConfusionMatrix.accuracy
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
מחשבת את הדיוק הכולל של מטריצת בלבול שמוגדרת כנכונה חלקי סך הכול.
| שימוש | החזרות |
|---|
ConfusionMatrix.accuracy() | מספר ממשי (float) |
| ארגומנט | סוג | פרטים |
|---|
זה: confusionMatrix | ConfusionMatrix | |
דוגמאות
עורך הקוד (JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]]);
var confusionMatrix = ee.ConfusionMatrix(array);
print("Constructed confusion matrix", confusionMatrix);
// Calculate overall accuracy.
print("Overall accuracy", confusionMatrix.accuracy());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy", confusionMatrix.consumersAccuracy());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print("Producer's accuracy", confusionMatrix.producersAccuracy());
// Calculate kappa statistic.
print('Kappa statistic', confusionMatrix.kappa());
הגדרת Python
מידע על Python API ועל שימוש ב-geemap לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]])
confusion_matrix = ee.ConfusionMatrix(array)
print("Constructed confusion matrix:")
pprint(confusion_matrix.getInfo())
# Calculate overall accuracy.
print("Overall accuracy:", confusion_matrix.accuracy().getInfo())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy:")
pprint(confusion_matrix.consumersAccuracy().getInfo())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
print("Producer's accuracy:")
pprint(confusion_matrix.producersAccuracy().getInfo())
# Calculate kappa statistic.
print("Kappa statistic:", confusion_matrix.kappa().getInfo())
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[],["The content details the computation of a confusion matrix's overall accuracy, calculated as correct predictions divided by the total. It demonstrates how to construct a `ConfusionMatrix` object from an array, representing actual vs. predicted values. The `accuracy()` method returns a float representing this overall accuracy. Other methods shown include calculating consumer's and producer's accuracy, and the kappa statistic using a `ConfusionMatrix`. Both JavaScript and Python examples are provided.\n"]]