ee.ConfusionMatrix.consumersAccuracy
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
חישוב הדיוק (המהימנות) של הצרכן במטריצת בלבול, שמוגדרת כ- (correct / total) לכל שורה.
שימוש | החזרות |
---|
ConfusionMatrix.consumersAccuracy() | מערך |
ארגומנט | סוג | פרטים |
---|
זה: confusionMatrix | ConfusionMatrix | |
דוגמאות
עורך הקוד (JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]]);
var confusionMatrix = ee.ConfusionMatrix(array);
print("Constructed confusion matrix", confusionMatrix);
// Calculate overall accuracy.
print("Overall accuracy", confusionMatrix.accuracy());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy", confusionMatrix.consumersAccuracy());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print("Producer's accuracy", confusionMatrix.producersAccuracy());
// Calculate kappa statistic.
print('Kappa statistic', confusionMatrix.kappa());
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]])
confusion_matrix = ee.ConfusionMatrix(array)
print("Constructed confusion matrix:")
pprint(confusion_matrix.getInfo())
# Calculate overall accuracy.
print("Overall accuracy:", confusion_matrix.accuracy().getInfo())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy:")
pprint(confusion_matrix.consumersAccuracy().getInfo())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
print("Producer's accuracy:")
pprint(confusion_matrix.producersAccuracy().getInfo())
# Calculate kappa statistic.
print("Kappa statistic:", confusion_matrix.kappa().getInfo())
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003e\u003ccode\u003econsumersAccuracy()\u003c/code\u003e computes the consumer's accuracy for each class in a confusion matrix.\u003c/p\u003e\n"],["\u003cp\u003eConsumer's accuracy, also known as user's accuracy or specificity, represents the reliability of the classification for each class.\u003c/p\u003e\n"],["\u003cp\u003eIt is calculated as the ratio of correctly classified instances to the total number of instances predicted for that class (correct / total for each row).\u003c/p\u003e\n"],["\u003cp\u003eThe result is returned as an \u003ccode\u003eArray\u003c/code\u003e where each element represents the consumer's accuracy for the corresponding class.\u003c/p\u003e\n"]]],[],null,["# ee.ConfusionMatrix.consumersAccuracy\n\nComputes the consumer's accuracy (reliability) of a confusion matrix defined as (correct / total) for each row.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------|---------|\n| ConfusionMatrix.consumersAccuracy`()` | Array |\n\n| Argument | Type | Details |\n|-------------------------|-----------------|---------|\n| this: `confusionMatrix` | ConfusionMatrix | |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Construct a confusion matrix from an array (rows are actual values,\n// columns are predicted values). We construct a confusion matrix here for\n// brevity and clear visualization, in most applications the confusion matrix\n// will be generated from ee.Classifier.confusionMatrix.\nvar array = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]]);\nvar confusionMatrix = ee.ConfusionMatrix(array);\nprint(\"Constructed confusion matrix\", confusionMatrix);\n\n// Calculate overall accuracy.\nprint(\"Overall accuracy\", confusionMatrix.accuracy());\n\n// Calculate consumer's accuracy, also known as user's accuracy or\n// specificity and the complement of commission error (1 − commission error).\nprint(\"Consumer's accuracy\", confusionMatrix.consumersAccuracy());\n\n// Calculate producer's accuracy, also known as sensitivity and the\n// compliment of omission error (1 − omission error).\nprint(\"Producer's accuracy\", confusionMatrix.producersAccuracy());\n\n// Calculate kappa statistic.\nprint('Kappa statistic', confusionMatrix.kappa());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# Construct a confusion matrix from an array (rows are actual values,\n# columns are predicted values). We construct a confusion matrix here for\n# brevity and clear visualization, in most applications the confusion matrix\n# will be generated from ee.Classifier.confusionMatrix.\narray = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]])\nconfusion_matrix = ee.ConfusionMatrix(array)\nprint(\"Constructed confusion matrix:\")\npprint(confusion_matrix.getInfo())\n\n# Calculate overall accuracy.\nprint(\"Overall accuracy:\", confusion_matrix.accuracy().getInfo())\n\n# Calculate consumer's accuracy, also known as user's accuracy or\n# specificity and the complement of commission error (1 − commission error).\nprint(\"Consumer's accuracy:\")\npprint(confusion_matrix.consumersAccuracy().getInfo())\n\n# Calculate producer's accuracy, also known as sensitivity and the\n# compliment of omission error (1 − omission error).\nprint(\"Producer's accuracy:\")\npprint(confusion_matrix.producersAccuracy().getInfo())\n\n# Calculate kappa statistic.\nprint(\"Kappa statistic:\", confusion_matrix.kappa().getInfo())\n```"]]