公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.ConfusionMatrix.producersAccuracy
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
計算混淆矩陣中每個資料欄的生產者準確率,定義為 (正確 / 總計)。
用量 | 傳回 |
---|
ConfusionMatrix.producersAccuracy() | 陣列 |
引數 | 類型 | 詳細資料 |
---|
這個:confusionMatrix | ConfusionMatrix | |
範例
程式碼編輯器 (JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]]);
var confusionMatrix = ee.ConfusionMatrix(array);
print("Constructed confusion matrix", confusionMatrix);
// Calculate overall accuracy.
print("Overall accuracy", confusionMatrix.accuracy());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy", confusionMatrix.consumersAccuracy());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print("Producer's accuracy", confusionMatrix.producersAccuracy());
// Calculate kappa statistic.
print('Kappa statistic', confusionMatrix.kappa());
Python 設定
請參閱
Python 環境頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]])
confusion_matrix = ee.ConfusionMatrix(array)
print("Constructed confusion matrix:")
pprint(confusion_matrix.getInfo())
# Calculate overall accuracy.
print("Overall accuracy:", confusion_matrix.accuracy().getInfo())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy:")
pprint(confusion_matrix.consumersAccuracy().getInfo())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
print("Producer's accuracy:")
pprint(confusion_matrix.producersAccuracy().getInfo())
# Calculate kappa statistic.
print("Kappa statistic:", confusion_matrix.kappa().getInfo())
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003e\u003ccode\u003eConfusionMatrix.producersAccuracy()\u003c/code\u003e calculates the producer's accuracy for each class in a confusion matrix.\u003c/p\u003e\n"],["\u003cp\u003eProducer's accuracy represents the proportion of correctly classified instances for a given class out of all actual instances of that class (sensitivity).\u003c/p\u003e\n"],["\u003cp\u003eIt is calculated as the ratio of correct predictions for a class to the total number of actual instances in that class (correct / total) for each column of the confusion matrix.\u003c/p\u003e\n"],["\u003cp\u003eThe result is returned as an \u003ccode\u003eArray\u003c/code\u003e.\u003c/p\u003e\n"]]],[],null,["# ee.ConfusionMatrix.producersAccuracy\n\nComputes the producer's accuracy of a confusion matrix defined as (correct / total) for each column.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------|---------|\n| ConfusionMatrix.producersAccuracy`()` | Array |\n\n| Argument | Type | Details |\n|-------------------------|-----------------|---------|\n| this: `confusionMatrix` | ConfusionMatrix | |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Construct a confusion matrix from an array (rows are actual values,\n// columns are predicted values). We construct a confusion matrix here for\n// brevity and clear visualization, in most applications the confusion matrix\n// will be generated from ee.Classifier.confusionMatrix.\nvar array = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]]);\nvar confusionMatrix = ee.ConfusionMatrix(array);\nprint(\"Constructed confusion matrix\", confusionMatrix);\n\n// Calculate overall accuracy.\nprint(\"Overall accuracy\", confusionMatrix.accuracy());\n\n// Calculate consumer's accuracy, also known as user's accuracy or\n// specificity and the complement of commission error (1 − commission error).\nprint(\"Consumer's accuracy\", confusionMatrix.consumersAccuracy());\n\n// Calculate producer's accuracy, also known as sensitivity and the\n// compliment of omission error (1 − omission error).\nprint(\"Producer's accuracy\", confusionMatrix.producersAccuracy());\n\n// Calculate kappa statistic.\nprint('Kappa statistic', confusionMatrix.kappa());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# Construct a confusion matrix from an array (rows are actual values,\n# columns are predicted values). We construct a confusion matrix here for\n# brevity and clear visualization, in most applications the confusion matrix\n# will be generated from ee.Classifier.confusionMatrix.\narray = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]])\nconfusion_matrix = ee.ConfusionMatrix(array)\nprint(\"Constructed confusion matrix:\")\npprint(confusion_matrix.getInfo())\n\n# Calculate overall accuracy.\nprint(\"Overall accuracy:\", confusion_matrix.accuracy().getInfo())\n\n# Calculate consumer's accuracy, also known as user's accuracy or\n# specificity and the complement of commission error (1 − commission error).\nprint(\"Consumer's accuracy:\")\npprint(confusion_matrix.consumersAccuracy().getInfo())\n\n# Calculate producer's accuracy, also known as sensitivity and the\n# compliment of omission error (1 − omission error).\nprint(\"Producer's accuracy:\")\npprint(confusion_matrix.producersAccuracy().getInfo())\n\n# Calculate kappa statistic.\nprint(\"Kappa statistic:\", confusion_matrix.kappa().getInfo())\n```"]]