Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin Earth Engine erişimini sürdürmek için
ticari olmayan uygunluğu doğrulaması gerekir.
ee.FeatureCollection.aggregate_histogram
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Bir koleksiyondaki nesnelerin belirli bir özelliği üzerinde toplama işlemi yaparak seçilen özelliğin histogramını hesaplar.
Kullanım | İadeler |
---|
FeatureCollection.aggregate_histogram(property) | Sözlük |
Bağımsız Değişken | Tür | Ayrıntılar |
---|
bu: collection | FeatureCollection | Üzerinde toplama işlemi yapılacak koleksiyon. |
property | Dize | Koleksiyonun her öğesinden kullanılacak özellik. |
Örnekler
Kod Düzenleyici (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Histogram of power plant capacities (MW)',
fc.aggregate_histogram('capacitymw')); // Dictionary
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Histogram of power plant capacities (MW):')
pprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[[["\u003cp\u003eComputes a histogram for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary where keys represent property value ranges and values represent the frequency of features within that range.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution of a specific attribute, such as the capacity of power plants in a region.\u003c/p\u003e\n"]]],["The `aggregate_histogram` method calculates a histogram for a specified property across a FeatureCollection. It takes the collection and the property name as input. The output is a dictionary representing the histogram. In the provided examples, a FeatureCollection of Belgian power plants is used, and a histogram of their capacities (in MW) is generated using `aggregate_histogram('capacitymw')`. The method works on both the Javascript and Python Earth Engine APIs.\n"],null,["# ee.FeatureCollection.aggregate_histogram\n\nAggregates over a given property of the objects in a collection, calculating a histogram of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------|------------|\n| FeatureCollection.aggregate_histogram`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Histogram of power plant capacities (MW)',\n fc.aggregate_histogram('capacitymw')); // Dictionary\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Histogram of power plant capacities (MW):')\npprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary\n```"]]