ee.FeatureCollection.aggregate_stats
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.
שימוש | החזרות |
---|
FeatureCollection.aggregate_stats(property) | מילון |
ארגומנט | סוג | פרטים |
---|
זה: collection | FeatureCollection | האוסף לצבירה. |
property | מחרוזת | המאפיין שבו רוצים להשתמש מכל רכיב באוסף. |
דוגמאות
עורך הקוד (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Power plant capacities (MW) summary stats',
fc.aggregate_stats('capacitymw'));
/**
* Expected ee.Dictionary output
*
* {
* "max": 2910,
* "mean": 201.34242424242427,
* "min": 1.8,
* "sample_sd": 466.4808892319684,
* "sample_var": 217604.42001864797,
* "sum": 13288.600000000002,
* "sum_sq": 16819846.24,
* "total_count": 66,
* "total_sd": 462.9334545609107,
* "total_var": 214307.38335169878,
* "valid_count": 66,
* "weight_sum": 66,
* "weighted_sum": 13288.600000000002
* }
*/
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Power plant capacities (MW) summary stats:')
pprint(fc.aggregate_stats('capacitymw').getInfo())
# Expected ee.Dictionary output
# {
# "max": 2910,
# "mean": 201.34242424242427,
# "min": 1.8,
# "sample_sd": 466.4808892319684,
# "sample_var": 217604.42001864797,
# "sum": 13288.600000000002,
# "sum_sq": 16819846.24,
# "total_count": 66,
# "total_sd": 462.9334545609107,
# "total_var": 214307.38335169878,
# "valid_count": 66,
# "weight_sum": 66,
# "weighted_sum": 13288.600000000002
# }
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003eCalculates descriptive statistics (sum, min, max, mean, standard deviation, and variance) for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a FeatureCollection and the property name as input.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary containing the calculated statistics.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution and central tendency of a property across features.\u003c/p\u003e\n"],["\u003cp\u003eExamples demonstrate using the function with power plant data to calculate capacity statistics.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.aggregate_stats\n\nAggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------|------------|\n| FeatureCollection.aggregate_stats`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Power plant capacities (MW) summary stats',\n fc.aggregate_stats('capacitymw'));\n\n/**\n * Expected ee.Dictionary output\n *\n * {\n * \"max\": 2910,\n * \"mean\": 201.34242424242427,\n * \"min\": 1.8,\n * \"sample_sd\": 466.4808892319684,\n * \"sample_var\": 217604.42001864797,\n * \"sum\": 13288.600000000002,\n * \"sum_sq\": 16819846.24,\n * \"total_count\": 66,\n * \"total_sd\": 462.9334545609107,\n * \"total_var\": 214307.38335169878,\n * \"valid_count\": 66,\n * \"weight_sum\": 66,\n * \"weighted_sum\": 13288.600000000002\n * }\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Power plant capacities (MW) summary stats:')\npprint(fc.aggregate_stats('capacitymw').getInfo())\n\n# Expected ee.Dictionary output\n\n# {\n# \"max\": 2910,\n# \"mean\": 201.34242424242427,\n# \"min\": 1.8,\n# \"sample_sd\": 466.4808892319684,\n# \"sample_var\": 217604.42001864797,\n# \"sum\": 13288.600000000002,\n# \"sum_sq\": 16819846.24,\n# \"total_count\": 66,\n# \"total_sd\": 462.9334545609107,\n# \"total_var\": 214307.38335169878,\n# \"valid_count\": 66,\n# \"weight_sum\": 66,\n# \"weighted_sum\": 13288.600000000002\n# }\n```"]]