ee.FeatureCollection.aggregate_stats

컬렉션에 있는 객체의 지정된 속성을 집계하여 선택한 속성의 합계, 최솟값, 최댓값, 평균, 샘플 표준 편차, 샘플 분산, 전체 표준 편차, 전체 분산을 계산합니다.

사용반환 값
FeatureCollection.aggregate_stats(property)딕셔너리
인수유형세부정보
다음과 같은 경우: collectionFeatureCollection집계할 컬렉션입니다.
property문자열컬렉션의 각 요소에서 사용할 속성입니다.

코드 편집기 (JavaScript)

// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
             .filter('country_lg == "Belgium"');

print('Power plant capacities (MW) summary stats',
      fc.aggregate_stats('capacitymw'));

/**
 * Expected ee.Dictionary output
 *
 * {
 *   "max": 2910,
 *   "mean": 201.34242424242427,
 *   "min": 1.8,
 *   "sample_sd": 466.4808892319684,
 *   "sample_var": 217604.42001864797,
 *   "sum": 13288.600000000002,
 *   "sum_sq": 16819846.24,
 *   "total_count": 66,
 *   "total_sd": 462.9334545609107,
 *   "total_var": 214307.38335169878,
 *   "valid_count": 66,
 *   "weight_sum": 66,
 *   "weighted_sum": 13288.600000000002
 * }
 */

Python 설정

Python API 및 geemap를 사용한 대화형 개발에 관한 자세한 내용은 Python 환경 페이지를 참고하세요.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
    'country_lg == "Belgium"')

print('Power plant capacities (MW) summary stats:')
pprint(fc.aggregate_stats('capacitymw').getInfo())

# Expected ee.Dictionary output

#  {
#   "max": 2910,
#    "mean": 201.34242424242427,
#    "min": 1.8,
#    "sample_sd": 466.4808892319684,
#    "sample_var": 217604.42001864797,
#    "sum": 13288.600000000002,
#    "sum_sq": 16819846.24,
#    "total_count": 66,
#    "total_sd": 462.9334545609107,
#    "total_var": 214307.38335169878,
#    "valid_count": 66,
#    "weight_sum": 66,
#    "weighted_sum": 13288.600000000002
#  }