Earth Engine은 공유 컴퓨팅 리소스를 보호하고 모든 사용자에게 안정적인 성능을 보장하기 위해
비상업적 할당량 등급을 도입합니다. 모든 비상업용 프로젝트는
2026년 4월 27일까지 할당량 등급을 선택해야 하며, 선택하지 않으면 커뮤니티 등급이 기본적으로 사용됩니다. 등급 할당량은 등급 선택 날짜와 관계없이
2026년 4월 27일에 모든 프로젝트에 적용됩니다.
자세히 알아보기
ee.FeatureCollection.classify
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
컬렉션의 각 특성을 분류합니다.
| 사용 | 반환 값 |
|---|
FeatureCollection.classify(classifier, outputName) | FeatureCollection |
| 인수 | 유형 | 세부정보 |
|---|
다음과 같은 경우: features | FeatureCollection | 분류할 특성의 컬렉션입니다. 각 특징에는 분류기 스키마의 모든 속성이 포함되어야 합니다. |
classifier | 분류기 | 사용할 분류기입니다. |
outputName | 문자열, 기본값: 'classification' | 추가할 출력 속성의 이름입니다. 분류기에 출력이 두 개 이상 있는 경우 이 인수는 무시됩니다. |
예
코드 편집기 (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
region: spectral.geometry(), // sample only from within Landsat image extent
scale: 30,
numPixels: 2000,
geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
features: training,
classProperty: landcover.bandNames().get(0),
inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
{classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
actual: landcover.bandNames().get(0),
predicted: 'predicted_landcover',
order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
Python 설정
Python API 및 geemap를 사용한 대화형 개발에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
# sample only from within Landsat image extent
'region': spectral.geometry(),
'scale': 30,
'numPixels': 2000,
'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
display('Sample for classifier development:', sample)
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
display('Training set:', training)
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
'features': training,
'classProperty': landcover.bandNames().get(0),
'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
**{'classifier': classifier, 'outputName': 'predicted_landcover'})
display('Predictions:', predictions)
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
display('Validation set:', validation)
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
display('Error matrix axis labels:', order)
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
'actual': landcover.bandNames().get(0),
'predicted': 'predicted_landcover',
'order': order
})
display('Error matrix:', error_matrix)
# Compute accuracy metrics from the error matrix.
display('Overall accuracy:', error_matrix.accuracy())
display('Consumer\'s accuracy:', error_matrix.consumersAccuracy())
display('Producer\'s accuracy:', error_matrix.producersAccuracy())
display('Kappa:', error_matrix.kappa())
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-10-30(UTC)
[null,null,["최종 업데이트: 2025-10-30(UTC)"],[],[]]