公告:所有在 
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.FeatureCollection.classify
    
    
      
    
    
      
      使用集合让一切井井有条
    
    
      
      根据您的偏好保存内容并对其进行分类。
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
对集合中的每个特征进行分类。
| 用法 | 返回 | 
|---|
| FeatureCollection.classify(classifier, outputName) | FeatureCollection | 
| 参数 | 类型 | 详细信息 | 
|---|
| 此: features | FeatureCollection | 要分类的特征集合。每个功能都必须包含分类器架构中的所有属性。 | 
| classifier | 分类器 | 要使用的分类器。 | 
| outputName | 字符串,默认值:“classification” | 要添加的输出属性的名称。如果分类器的输出不止一个,则会忽略此实参。 | 
  
  
  示例
  
    
  
  
    
    
  
  
  
  
    
    
    
      代码编辑器 (JavaScript)
    
    
  /**
 * Classifies features in a FeatureCollection and computes an error matrix.
 */
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
    ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
    ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
  region: spectral.geometry(),  // sample only from within Landsat image extent
  scale: 30,
  numPixels: 2000,
  geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
  features: training,
  classProperty: landcover.bandNames().get(0),
  inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
    {classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
  actual: landcover.bandNames().get(0),
  predicted: 'predicted_landcover',
  order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
  
    
  
  
    
  
  
  
  
    
  
    
  Python 设置
  如需了解 Python API 和如何使用 geemap 进行交互式开发,请参阅 
    Python 环境页面。
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
    'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
    # sample only from within Landsat image extent
    'region': spectral.geometry(),
    'scale': 30,
    'numPixels': 2000,
    'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
display('Sample for classifier development:', sample)
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
display('Training set:', training)
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
    'features': training,
    'classProperty': landcover.bandNames().get(0),
    'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
    **{'classifier': classifier, 'outputName': 'predicted_landcover'})
display('Predictions:', predictions)
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
display('Validation set:', validation)
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
display('Error matrix axis labels:', order)
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
    'actual': landcover.bandNames().get(0),
    'predicted': 'predicted_landcover',
    'order': order
})
display('Error matrix:', error_matrix)
# Compute accuracy metrics from the error matrix.
display('Overall accuracy:', error_matrix.accuracy())
display('Consumer\'s accuracy:', error_matrix.consumersAccuracy())
display('Producer\'s accuracy:', error_matrix.producersAccuracy())
display('Kappa:', error_matrix.kappa())
  
  
  
  
  
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
  最后更新时间 (UTC):2025-10-30。
  
  
  
    
      [null,null,["最后更新时间 (UTC):2025-10-30。"],[],[]]