ee.FeatureCollection.cluster
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
מבצעת אשכול של כל תכונה באוסף, ומוסיפה לכל תכונה עמודה חדשה שמכילה את מספר האשכול שאליו היא שויכה.
שימוש | החזרות |
---|
FeatureCollection.cluster(clusterer, outputName) | FeatureCollection |
ארגומנט | סוג | פרטים |
---|
זה: features | FeatureCollection | אוסף התכונות לאשכול. כל תכונה חייבת להכיל את כל המאפיינים בסכימה של הכלי לאשכולות. |
clusterer | Clusterer | האלגוריתם לאשכולות שבו רוצים להשתמש. |
outputName | מחרוזת, ברירת מחדל: cluster | השם של נכס הפלט שרוצים להוסיף. |
דוגמאות
עורך הקוד (JavaScript)
// Import a Sentinel-2 surface reflectance image.
var image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
// Get the image geometry to define the geographical bounds of a point sample.
var imageBounds = image.geometry();
// Sample the image at a set of random points; a feature collection is returned.
var pointSampleFc = image.sample(
{region: imageBounds, scale: 20, numPixels: 1000, geometries: true});
// Instantiate a k-means clusterer and train it.
var clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);
// Cluster the input using the trained clusterer; optionally specify the name
// of the output cluster ID property.
var clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');
print('Note added "spectral_cluster" property for an example feature',
clusteredFc.first().toDictionary());
// Visualize the clusters by applying a unique color to each cluster ID.
var palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);
var clusterVis = clusteredFc.map(function(feature) {
return feature.set('style', {
color: palette.get(feature.get('spectral_cluster')),
});
}).style({styleProperty: 'style'});
// Display the points colored by cluster ID with the S2 image.
Map.setCenter(-122.35, 37.47, 9);
Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');
Map.addLayer(clusterVis, null, 'Clusters');
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# Import a Sentinel-2 surface reflectance image.
image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
# Get the image geometry to define the geographical bounds of a point sample.
image_bounds = image.geometry()
# Sample the image at a set of random points a feature collection is returned.
point_sample_fc = image.sample(
region=image_bounds, scale=20, numPixels=1000, geometries=True
)
# Instantiate a k-means clusterer and train it.
clusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)
# Cluster the input using the trained clusterer optionally specify the name
# of the output cluster ID property.
clustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')
display(
'Note added "spectral_cluster" property for an example feature',
clustered_fc.first().toDictionary(),
)
# Visualize the clusters by applying a unique color to each cluster ID.
palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])
cluster_vis = clustered_fc.map(
lambda feature: feature.set(
'style', {'color': palette.get(feature.get('spectral_cluster'))}
)
).style(styleProperty='style')
# Display the points colored by cluster ID with the S2 image.
m = geemap.Map()
m.set_center(-122.35, 37.47, 9)
m.add_layer(
image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'
)
m.add_layer(cluster_vis, None, 'Clusters')
m
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003eGroups features within a collection into clusters based on a provided clusterer.\u003c/p\u003e\n"],["\u003cp\u003eAssigns each feature a cluster ID, stored in a new property with a user-defined name (defaults to "cluster").\u003c/p\u003e\n"],["\u003cp\u003eRequires a trained clusterer and a FeatureCollection where each feature contains the necessary properties for clustering.\u003c/p\u003e\n"],["\u003cp\u003eReturns a new FeatureCollection with the added cluster ID property.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.cluster\n\nClusters each feature in a collection, adding a new column to each feature containing the cluster number to which it has been assigned.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|-------------------|\n| FeatureCollection.cluster`(clusterer, `*outputName*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|\n| this: `features` | FeatureCollection | The collection of features to cluster. Each feature must contain all the properties in the clusterer's schema. |\n| `clusterer` | Clusterer | The clusterer to use. |\n| `outputName` | String, default: \"cluster\" | The name of the output property to be added. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Import a Sentinel-2 surface reflectance image.\nvar image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\n\n// Get the image geometry to define the geographical bounds of a point sample.\nvar imageBounds = image.geometry();\n\n// Sample the image at a set of random points; a feature collection is returned.\nvar pointSampleFc = image.sample(\n {region: imageBounds, scale: 20, numPixels: 1000, geometries: true});\n\n// Instantiate a k-means clusterer and train it.\nvar clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);\n\n// Cluster the input using the trained clusterer; optionally specify the name\n// of the output cluster ID property.\nvar clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');\n\nprint('Note added \"spectral_cluster\" property for an example feature',\n clusteredFc.first().toDictionary());\n\n// Visualize the clusters by applying a unique color to each cluster ID.\nvar palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);\nvar clusterVis = clusteredFc.map(function(feature) {\n return feature.set('style', {\n color: palette.get(feature.get('spectral_cluster')),\n });\n}).style({styleProperty: 'style'});\n\n// Display the points colored by cluster ID with the S2 image.\nMap.setCenter(-122.35, 37.47, 9);\nMap.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');\nMap.addLayer(clusterVis, null, 'Clusters');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Import a Sentinel-2 surface reflectance image.\nimage = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n\n# Get the image geometry to define the geographical bounds of a point sample.\nimage_bounds = image.geometry()\n\n# Sample the image at a set of random points a feature collection is returned.\npoint_sample_fc = image.sample(\n region=image_bounds, scale=20, numPixels=1000, geometries=True\n)\n\n# Instantiate a k-means clusterer and train it.\nclusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)\n\n# Cluster the input using the trained clusterer optionally specify the name\n# of the output cluster ID property.\nclustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')\n\ndisplay(\n 'Note added \"spectral_cluster\" property for an example feature',\n clustered_fc.first().toDictionary(),\n)\n\n# Visualize the clusters by applying a unique color to each cluster ID.\npalette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])\ncluster_vis = clustered_fc.map(\n lambda feature: feature.set(\n 'style', {'color': palette.get(feature.get('spectral_cluster'))}\n )\n).style(styleProperty='style')\n\n# Display the points colored by cluster ID with the S2 image.\nm = geemap.Map()\nm.set_center(-122.35, 37.47, 9)\nm.add_layer(\n image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'\n)\nm.add_layer(cluster_vis, None, 'Clusters')\nm\n```"]]