Объявление : Все некоммерческие проекты, зарегистрированные для использования Earth Engine до
15 апреля 2025 года, должны
подтвердить некоммерческое право на сохранение доступа к Earth Engine.
ee.FeatureCollection.distance
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Создаёт изображение DOUBLE, где каждый пиксель представляет собой расстояние в метрах от центра пикселя до ближайшей точки, линии или границы полигона в коллекции. Обратите внимание, что расстояние также измеряется внутри полигонов. Пиксели, находящиеся за пределами радиуса поиска ('searchRadius') от геометрии, будут маскироваться.
Расстояния вычисляются на сфере, поэтому существует небольшая погрешность, пропорциональная разнице широты между каждым пикселем и ближайшей геометрией.
Использование | Возврат | FeatureCollection. distance ( searchRadius , maxError ) | Изображение |
Аргумент | Тип | Подробности | это: features | FeatureCollection | Коллекция признаков, из которой извлекаются признаки, используемые для вычисления расстояний между пикселями. |
searchRadius | Число с плавающей точкой, по умолчанию: 100000 | Максимальное расстояние в метрах от каждого пикселя для поиска краёв. Пиксели будут маскироваться, если в пределах этого расстояния нет краёв. |
maxError | Число с плавающей точкой, по умолчанию: 100 | Максимальная ошибка перепроецирования в метрах, используется только в том случае, если входные полилинии требуют перепроецирования. Если указано значение «0», то операция завершится ошибкой, если требуется перепроецирование. |
Примеры
Редактор кода (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
// Generate an image of distance to nearest power plant.
var distance = fc.distance({searchRadius: 50000, maxError: 50});
// Display the image and FeatureCollection on the map.
Map.setCenter(4.56, 50.78, 7);
Map.addLayer(distance, {max: 50000}, 'Distance to power plants');
Map.addLayer(fc, {color: 'red'}, 'Power plants');
Настройка Python
Информацию об API Python и использовании geemap
для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"'
)
# Generate an image of distance to nearest power plant.
distance = fc.distance(searchRadius=50000, maxError=50)
# Display the image and FeatureCollection on the map.
m = geemap.Map()
m.set_center(4.56, 50.78, 7)
m.add_layer(distance, {'max': 50000}, 'Distance to power plants')
m.add_layer(fc, {'color': 'red'}, 'Power plants')
m
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-24 UTC.
[null,null,["Последнее обновление: 2025-07-24 UTC."],[[["\u003cp\u003eComputes the distance (in meters) from each pixel to the nearest point, line, or polygon within a given FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eGenerates a double-precision image where pixel values represent the distance to the nearest feature.\u003c/p\u003e\n"],["\u003cp\u003eOffers adjustable search radius and maximum error parameters for controlling computation.\u003c/p\u003e\n"],["\u003cp\u003ePixels beyond the search radius or exceeding the error threshold are masked out.\u003c/p\u003e\n"],["\u003cp\u003eCalculations consider the Earth's curvature for accurate distance measurements.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.distance\n\nProduces a DOUBLE image where each pixel is the distance in meters from the pixel center to the nearest Point, LineString, or polygonal boundary in the collection. Note distance is also measured within interiors of polygons. Pixels that are not within 'searchRadius' meters of a geometry will be masked out.\n\n\u003cbr /\u003e\n\nDistances are computed on a sphere, so there is a small error proportional to the latitude difference between each pixel and the nearest geometry.\n\n| Usage | Returns |\n|---------------------------------------------------------------|---------|\n| FeatureCollection.distance`(`*searchRadius* `, `*maxError*`)` | Image |\n\n| Argument | Type | Details |\n|------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `features` | FeatureCollection | Feature collection from which to get features used to compute pixel distances. |\n| `searchRadius` | Float, default: 100000 | Maximum distance in meters from each pixel to look for edges. Pixels will be masked unless there are edges within this distance. |\n| `maxError` | Float, default: 100 | Maximum reprojection error in meters, only used if the input polylines require reprojection. If '0' is provided, then this operation will fail if projection is required. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\n// Generate an image of distance to nearest power plant.\nvar distance = fc.distance({searchRadius: 50000, maxError: 50});\n\n// Display the image and FeatureCollection on the map.\nMap.setCenter(4.56, 50.78, 7);\nMap.addLayer(distance, {max: 50000}, 'Distance to power plants');\nMap.addLayer(fc, {color: 'red'}, 'Power plants');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"'\n)\n\n# Generate an image of distance to nearest power plant.\ndistance = fc.distance(searchRadius=50000, maxError=50)\n\n# Display the image and FeatureCollection on the map.\nm = geemap.Map()\nm.set_center(4.56, 50.78, 7)\nm.add_layer(distance, {'max': 50000}, 'Distance to power plants')\nm.add_layer(fc, {'color': 'red'}, 'Power plants')\nm\n```"]]