公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.FeatureCollection.draw
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
繪製用於視覺化的向量集合。不適合做為其他演算法的輸入內容。
用量 | 傳回 |
---|
FeatureCollection.draw(color, pointRadius, strokeWidth) | 圖片 |
引數 | 類型 | 詳細資料 |
---|
這個:collection | FeatureCollection | 要繪製的集合。 |
color | 字串 | 格式為 RRGGBB 的十六進位字串,用於指定繪製地圖項目的顏色。 |
pointRadius | 整數,預設值為 3 | 點標記的半徑 (以像素為單位)。 |
strokeWidth | 整數,預設值為 2 | 線條和多邊形邊框的寬度 (以像素為單位)。 |
範例
程式碼編輯器 (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
// Paint FeatureCollection to an image for visualization.
var fcVis = fc.draw({color: '800080', pointRadius: 5, strokeWidth: 3});
Map.setCenter(4.56, 50.78, 8);
Map.addLayer(fcVis);
Python 設定
請參閱
Python 環境頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"'
)
# Paint FeatureCollection to an image for visualization.
fc_vis = fc.draw(color='800080', pointRadius=5, strokeWidth=3)
m = geemap.Map()
m.set_center(4.56, 50.78, 8)
m.add_layer(fc_vis)
m
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003e\u003ccode\u003edraw()\u003c/code\u003e visualizes FeatureCollections as images for display purposes, not for algorithmic input.\u003c/p\u003e\n"],["\u003cp\u003eIt accepts color, point radius, and stroke width parameters to customize the visualization.\u003c/p\u003e\n"],["\u003cp\u003eUse \u003ccode\u003edraw()\u003c/code\u003e with FeatureCollections to create image overlays for maps, as demonstrated with the power plants example.\u003c/p\u003e\n"]]],["The `FeatureCollection.draw()` method visualizes a feature collection as an image. It accepts a `FeatureCollection`, a `color` (hex string), `pointRadius` (integer, default 3), and `strokeWidth` (integer, default 2). The method returns an image and is intended for visualization, not algorithmic input. The examples demonstrate how to apply this method using the power plants of Belgium. It can be done in JavaScript or python (colab or not) and the visualization will be an image.\n"],null,["# ee.FeatureCollection.draw\n\nPaints a vector collection for visualization. Not intended for use as input to other algorithms.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------|---------|\n| FeatureCollection.draw`(color, `*pointRadius* `, `*strokeWidth*`)` | Image |\n\n| Argument | Type | Details |\n|--------------------|---------------------|-----------------------------------------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to draw. |\n| `color` | String | A hex string in the format RRGGBB specifying the color to use for drawing the features. |\n| `pointRadius` | Integer, default: 3 | The radius in pixels of the point markers. |\n| `strokeWidth` | Integer, default: 2 | The width in pixels of lines and polygon borders. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\n// Paint FeatureCollection to an image for visualization.\nvar fcVis = fc.draw({color: '800080', pointRadius: 5, strokeWidth: 3});\nMap.setCenter(4.56, 50.78, 8);\nMap.addLayer(fcVis);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"'\n)\n\n# Paint FeatureCollection to an image for visualization.\nfc_vis = fc.draw(color='800080', pointRadius=5, strokeWidth=3)\nm = geemap.Map()\nm.set_center(4.56, 50.78, 8)\nm.add_layer(fc_vis)\nm\n```"]]