ee.FeatureCollection.errorMatrix
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
חישוב מטריצת שגיאות דו-ממדית לאוסף על ידי השוואה בין שתי עמודות באוסף: אחת שמכילה את הערכים בפועל ואחת שמכילה את הערכים החזויים. הערכים צריכים להיות מספרים שלמים קטנים ועוקבים, החל מ-0. ציר 0 (השורות) של המטריצה מתאים לערכים בפועל, וציר 1 (העמודות) מתאים לערכים החזויים.
שימוש | החזרות |
---|
FeatureCollection.errorMatrix(actual, predicted, order) | ConfusionMatrix |
ארגומנט | סוג | פרטים |
---|
זה: collection | FeatureCollection | אוסף הקלט. |
actual | מחרוזת | השם של המאפיין שמכיל את הערך בפועל. |
predicted | מחרוזת | שם הנכס שמכיל את הערך החזוי. |
order | רשימה, ברירת מחדל: null | רשימה של הערכים הצפויים. אם לא מציינים את הארגומנט הזה, המערכת מניחה שהערכים רציפים ושהם נעים בטווח שבין 0 ל-maxValue. אם מציינים ערכים, המערכת משתמשת רק בערכים שתואמים לרשימה הזו, והמטריצה תכלול מאפיינים וסדר שתואמים לרשימה הזו. |
דוגמאות
עורך הקוד (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
region: spectral.geometry(), // sample only from within Landsat image extent
scale: 30,
numPixels: 2000,
geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
features: training,
classProperty: landcover.bandNames().get(0),
inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
{classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
actual: landcover.bandNames().get(0),
predicted: 'predicted_landcover',
order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
# sample only from within Landsat image extent
'region': spectral.geometry(),
'scale': 30,
'numPixels': 2000,
'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
print('Sample for classifier development:', sample.getInfo())
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
print('Training set:', training.getInfo())
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
'features': training,
'classProperty': landcover.bandNames().get(0),
'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
**{'classifier': classifier, 'outputName': 'predicted_landcover'})
print('Predictions:', predictions.getInfo())
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
print('Validation set:', validation.getInfo())
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
print('Error matrix axis labels:')
pprint(order.getInfo())
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
'actual': landcover.bandNames().get(0),
'predicted': 'predicted_landcover',
'order': order
})
print('Error matrix:')
pprint(error_matrix.getInfo())
# Compute accuracy metrics from the error matrix.
print('Overall accuracy:', error_matrix.accuracy().getInfo())
print('Consumer\'s accuracy:')
pprint(error_matrix.consumersAccuracy().getInfo())
print('Producer\'s accuracy:')
pprint(error_matrix.producersAccuracy().getInfo())
print('Kappa:', error_matrix.kappa().getInfo())
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003eComputes a 2D error matrix (confusion matrix) for a FeatureCollection by comparing actual and predicted values.\u003c/p\u003e\n"],["\u003cp\u003eTakes the names of the properties containing the actual and predicted values as inputs.\u003c/p\u003e\n"],["\u003cp\u003eAccepts an optional 'order' argument to specify the expected values for the matrix axes.\u003c/p\u003e\n"],["\u003cp\u003eThe matrix rows represent actual values and columns represent predicted values, aiding in assessing classification accuracy.\u003c/p\u003e\n"],["\u003cp\u003eValues are expected to be small, contiguous integers starting from 0.\u003c/p\u003e\n"]]],["The `errorMatrix` method computes a 2D confusion matrix by comparing actual and predicted values from two columns within a FeatureCollection. It takes `actual` and `predicted` column names as inputs, and an optional `order` list to define the matrix's dimensions and included values. The function uses small contiguous integers starting from 0, and returns a `ConfusionMatrix` object that includes overall accuracy, consumer's accuracy, producer's accuracy and kappa.\n"],null,["# ee.FeatureCollection.errorMatrix\n\nComputes a 2D error matrix for a collection by comparing two columns of a collection: one containing the actual values, and one containing predicted values. The values are expected to be small contiguous integers, starting from 0. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------------------|-----------------|\n| FeatureCollection.errorMatrix`(actual, predicted, `*order*`)` | ConfusionMatrix |\n\n| Argument | Type | Details |\n|--------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `collection` | FeatureCollection | The input collection. |\n| `actual` | String | The name of the property containing the actual value. |\n| `predicted` | String | The name of the property containing the predicted value. |\n| `order` | List, default: null | A list of the expected values. If this argument is not specified, the values are assumed to be contiguous and span the range 0 to maxValue. If specified, only values matching this list are used, and the matrix will have dimensions and order matching this list. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n/**\n * Classifies features in a FeatureCollection and computes an error matrix.\n */\n\n// Combine Landsat and NLCD images using only the bands representing\n// predictor variables (spectral reflectance) and target labels (land cover).\nvar spectral =\n ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');\nvar landcover =\n ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');\nvar sampleSource = spectral.addBands(landcover);\n\n// Sample the combined images to generate a FeatureCollection.\nvar sample = sampleSource.sample({\n region: spectral.geometry(), // sample only from within Landsat image extent\n scale: 30,\n numPixels: 2000,\n geometries: true\n})\n// Add a random value column with uniform distribution for hold-out\n// training/validation splitting.\n.randomColumn({distribution: 'uniform'});\nprint('Sample for classifier development', sample);\n\n// Split out ~80% of the sample for training the classifier.\nvar training = sample.filter('random \u003c 0.8');\nprint('Training set', training);\n\n// Train a random forest classifier.\nvar classifier = ee.Classifier.smileRandomForest(10).train({\n features: training,\n classProperty: landcover.bandNames().get(0),\n inputProperties: spectral.bandNames()\n});\n\n// Classify the sample.\nvar predictions = sample.classify(\n {classifier: classifier, outputName: 'predicted_landcover'});\nprint('Predictions', predictions);\n\n// Split out the validation feature set.\nvar validation = predictions.filter('random \u003e= 0.8');\nprint('Validation set', validation);\n\n// Get a list of possible class values to use for error matrix axis labels.\nvar order = sample.aggregate_array('landcover').distinct().sort();\nprint('Error matrix axis labels', order);\n\n// Compute an error matrix that compares predicted vs. expected values.\nvar errorMatrix = validation.errorMatrix({\n actual: landcover.bandNames().get(0),\n predicted: 'predicted_landcover',\n order: order\n});\nprint('Error matrix', errorMatrix);\n\n// Compute accuracy metrics from the error matrix.\nprint(\"Overall accuracy\", errorMatrix.accuracy());\nprint(\"Consumer's accuracy\", errorMatrix.consumersAccuracy());\nprint(\"Producer's accuracy\", errorMatrix.producersAccuracy());\nprint(\"Kappa\", errorMatrix.kappa());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# Classifies features in a FeatureCollection and computes an error matrix.\n\n# Combine Landsat and NLCD images using only the bands representing\n# predictor variables (spectral reflectance) and target labels (land cover).\nspectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(\n 'SR_B[1-7]')\nlandcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')\nsample_source = spectral.addBands(landcover)\n\n# Sample the combined images to generate a FeatureCollection.\nsample = sample_source.sample(**{\n # sample only from within Landsat image extent\n 'region': spectral.geometry(),\n 'scale': 30,\n 'numPixels': 2000,\n 'geometries': True\n })\n# Add a random value column with uniform distribution for hold-out\n# training/validation splitting.\nsample = sample.randomColumn(**{'distribution': 'uniform'})\nprint('Sample for classifier development:', sample.getInfo())\n\n# Split out ~80% of the sample for training the classifier.\ntraining = sample.filter('random \u003c 0.8')\nprint('Training set:', training.getInfo())\n\n# Train a random forest classifier.\nclassifier = ee.Classifier.smileRandomForest(10).train(**{\n 'features': training,\n 'classProperty': landcover.bandNames().get(0),\n 'inputProperties': spectral.bandNames()\n })\n\n# Classify the sample.\npredictions = sample.classify(\n **{'classifier': classifier, 'outputName': 'predicted_landcover'})\nprint('Predictions:', predictions.getInfo())\n\n# Split out the validation feature set.\nvalidation = predictions.filter('random \u003e= 0.8')\nprint('Validation set:', validation.getInfo())\n\n# Get a list of possible class values to use for error matrix axis labels.\norder = sample.aggregate_array('landcover').distinct().sort()\nprint('Error matrix axis labels:')\npprint(order.getInfo())\n\n# Compute an error matrix that compares predicted vs. expected values.\nerror_matrix = validation.errorMatrix(**{\n 'actual': landcover.bandNames().get(0),\n 'predicted': 'predicted_landcover',\n 'order': order\n })\nprint('Error matrix:')\npprint(error_matrix.getInfo())\n\n# Compute accuracy metrics from the error matrix.\nprint('Overall accuracy:', error_matrix.accuracy().getInfo())\nprint('Consumer\\'s accuracy:')\npprint(error_matrix.consumersAccuracy().getInfo())\nprint('Producer\\'s accuracy:')\npprint(error_matrix.producersAccuracy().getInfo())\nprint('Kappa:', error_matrix.kappa().getInfo())\n```"]]