Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.FeatureCollection.kriging
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Restituisce i risultati del campionamento di uno stimatore di Kriging in ogni pixel.
Utilizzo | Resi |
---|
FeatureCollection.kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer) | Immagine |
Argomento | Tipo | Dettagli |
---|
questo: collection | FeatureCollection | Raccolta di caratteristiche da utilizzare come dati di origine per la stima. |
propertyName | Stringa | Proprietà da stimare (deve essere numerica). |
shape | Stringa | Forma del semivariogramma (uno tra {exponential, gaussian, spherical}). |
range | Float | Intervallo del semivariogramma, in metri. |
sill | Float | Soglia del semivariogramma. |
nugget | Float | Effetto nugget del semivariogramma. |
maxDistance | Float, valore predefinito: null | Raggio che determina quali caratteristiche sono incluse nel calcolo di ogni pixel, in metri. Il valore predefinito è l'intervallo del semivariogramma. |
reducer | Riduttore, valore predefinito: null | Riduttore utilizzato per comprimere il valore "propertyName" dei punti sovrapposti in un unico valore. |
Esempi
Editor di codice (JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee.Image('ECMWF/ERA5/MONTHLY/202006')
.select(['mean_2m_air_temperature'], ['tmean']);
// Region of interest: South Pacific Ocean.
var roi = ee.Geometry.Polygon(
[[[-156.053, -16.240],
[-156.053, -44.968],
[-118.633, -44.968],
[-118.633, -16.240]]], null, false);
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img.sample(
{region: roi, scale: 25000, numPixels: 50, geometries: true}); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc.kriging({
propertyName: 'tmean',
shape: 'gaussian',
range: 2.8e6,
sill: 164,
nugget: 0.05,
maxDistance: 1.8e6,
reducer: ee.Reducer.mean()
});
// Display the results on the map.
Map.setCenter(-137.47, -30.47, 3);
Map.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee.Image('ECMWF/ERA5/MONTHLY/202006').select(
['mean_2m_air_temperature'], ['tmean']
)
# Region of interest: South Pacific Ocean.
roi = ee.Geometry.Polygon(
[[
[-156.053, -16.240],
[-156.053, -44.968],
[-118.633, -44.968],
[-118.633, -16.240],
]],
None,
False,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True)
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc.kriging(
propertyName='tmean',
shape='gaussian',
range=2.8e6,
sill=164,
nugget=0.05,
maxDistance=1.8e6,
reducer=ee.Reducer.mean(),
)
# Display the results on the map.
m = geemap.Map()
m.set_center(-137.47, -30.47, 3)
m.add_layer(
tmean_img,
{'min': 279, 'max': 300, 'min': 279, 'max': 300},
'Temperature (K)',
)
m
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003ekriging()\u003c/code\u003e interpolates values across a FeatureCollection using specified Kriging parameters to generate an Image.\u003c/p\u003e\n"],["\u003cp\u003eIt estimates values for each pixel based on the spatial correlation of a numeric property within the input FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eThe interpolation process is guided by a semivariogram model defined by \u003ccode\u003eshape\u003c/code\u003e, \u003ccode\u003erange\u003c/code\u003e, \u003ccode\u003esill\u003c/code\u003e, and \u003ccode\u003enugget\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify a search radius (\u003ccode\u003emaxDistance\u003c/code\u003e) and a reducer to handle overlapping points (\u003ccode\u003ereducer\u003c/code\u003e).\u003c/p\u003e\n"]]],["The `kriging` method interpolates a surface from a `FeatureCollection` by sampling a Kriging estimator at each pixel, returning an `Image`. Key parameters include: `propertyName` (numeric property to estimate), `shape` (semivariogram shape), `range`, `sill`, and `nugget` (semivariogram values). `maxDistance` limits feature inclusion in pixel calculations. An optional `reducer` handles overlapping points. Example demonstrates creating a temperature surface from sampled points, setting Kriging parameters, and visualizing the result.\n"],null,["# ee.FeatureCollection.kriging\n\nReturns the results of sampling a Kriging estimator at each pixel.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------------------------------------------------|---------|\n| FeatureCollection.kriging`(propertyName, shape, range, sill, nugget, `*maxDistance* `, `*reducer*`)` | Image |\n\n| Argument | Type | Details |\n|--------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| this: `collection` | FeatureCollection | Feature collection to use as source data for the estimation. |\n| `propertyName` | String | Property to be estimated (must be numeric). |\n| `shape` | String | Semivariogram shape (one of {exponential, gaussian, spherical}). |\n| `range` | Float | Semivariogram range, in meters. |\n| `sill` | Float | Semivariogram sill. |\n| `nugget` | Float | Semivariogram nugget. |\n| `maxDistance` | Float, default: null | Radius which determines which features are included in each pixel's computation, in meters. Defaults to the semivariogram's range. |\n| `reducer` | Reducer, default: null | Reducer used to collapse the 'propertyName' value of overlapping points into a single value. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n/**\n * This example generates an interpolated surface using kriging from a\n * FeatureCollection of random points that simulates a table of air temperature\n * at ocean weather buoys.\n */\n\n// Average air temperature at 2m height for June, 2020.\nvar img = ee.Image('ECMWF/ERA5/MONTHLY/202006')\n .select(['mean_2m_air_temperature'], ['tmean']);\n\n// Region of interest: South Pacific Ocean.\nvar roi = ee.Geometry.Polygon(\n [[[-156.053, -16.240],\n [-156.053, -44.968],\n [-118.633, -44.968],\n [-118.633, -16.240]]], null, false);\n\n// Sample the mean June 2020 temperature surface at random points in the ROI.\nvar tmeanFc = img.sample(\n {region: roi, scale: 25000, numPixels: 50, geometries: true}); //250\n\n// Generate an interpolated surface from the points using kriging; parameters\n// are set according to interpretation of an unshown semivariogram. See section\n// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.\nvar tmeanImg = tmeanFc.kriging({\n propertyName: 'tmean',\n shape: 'gaussian',\n range: 2.8e6,\n sill: 164,\n nugget: 0.05,\n maxDistance: 1.8e6,\n reducer: ee.Reducer.mean()\n});\n\n// Display the results on the map.\nMap.setCenter(-137.47, -30.47, 3);\nMap.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# This example generates an interpolated surface using kriging from a\n# FeatureCollection of random points that simulates a table of air temperature\n# at ocean weather buoys.\n\n# Average air temperature at 2m height for June, 2020.\nimg = ee.Image('ECMWF/ERA5/MONTHLY/202006').select(\n ['mean_2m_air_temperature'], ['tmean']\n)\n\n# Region of interest: South Pacific Ocean.\nroi = ee.Geometry.Polygon(\n [[\n [-156.053, -16.240],\n [-156.053, -44.968],\n [-118.633, -44.968],\n [-118.633, -16.240],\n ]],\n None,\n False,\n)\n\n# Sample the mean June 2020 temperature surface at random points in the ROI.\ntmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True)\n\n# Generate an interpolated surface from the points using kriging parameters\n# are set according to interpretation of an unshown semivariogram. See section\n# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.\ntmean_img = tmean_fc.kriging(\n propertyName='tmean',\n shape='gaussian',\n range=2.8e6,\n sill=164,\n nugget=0.05,\n maxDistance=1.8e6,\n reducer=ee.Reducer.mean(),\n)\n\n# Display the results on the map.\nm = geemap.Map()\nm.set_center(-137.47, -30.47, 3)\nm.add_layer(\n tmean_img,\n {'min': 279, 'max': 300, 'min': 279, 'max': 300},\n 'Temperature (K)',\n)\nm\n```"]]