公告:凡是在 
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取。如未在 2025 年 9 月 26 日前完成驗證,存取權可能會暫停。
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.FeatureCollection.kriging
    
    
      
    
    
      
      透過集合功能整理內容
    
    
      
      你可以依據偏好儲存及分類內容。
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
傳回每個像素的 Kriging 估算器取樣結果。
| 用量 | 傳回 | 
|---|
| FeatureCollection.kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer) | 圖片 | 
| 引數 | 類型 | 詳細資料 | 
|---|
| 這個: collection | FeatureCollection | 做為估算來源資料的地圖項目集合。 | 
| propertyName | 字串 | 要估算的屬性 (必須是數值)。 | 
| shape | 字串 | 半變異函數形狀 (其中一種:{exponential、gaussian、spherical})。 | 
| range | 浮點值 | 半變異函數範圍 (以公尺為單位)。 | 
| sill | 浮點值 | 半變異函數變異數。 | 
| nugget | 浮點值 | 半變異函數塊金。 | 
| maxDistance | 浮點值,預設值為空值 | 決定每個像素計算中包含哪些特徵的半徑 (以公尺為單位)。預設為半變異函數的範圍。 | 
| reducer | Reducer,預設值:null | Reducer,用於將重疊點的「propertyName」值摺疊為單一值。 | 
  
  
  範例
  
    
  
  
    
    
  
  
  
  
    
    
    
      程式碼編輯器 (JavaScript)
    
    
  /**
 * This example generates an interpolated surface using kriging from a
 * FeatureCollection of random points that simulates a table of air temperature
 * at ocean weather buoys.
 */
// Average air temperature at 2m height for June, 2020.
var img = ee.Image('ECMWF/ERA5/MONTHLY/202006')
              .select(['mean_2m_air_temperature'], ['tmean']);
// Region of interest: South Pacific Ocean.
var roi = ee.Geometry.Polygon(
        [[[-156.053, -16.240],
          [-156.053, -44.968],
          [-118.633, -44.968],
          [-118.633, -16.240]]], null, false);
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img.sample(
  {region: roi, scale: 25000, numPixels: 50, geometries: true});  // 250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc.kriging({
  propertyName: 'tmean',
  shape: 'gaussian',
  range: 2.8e6,
  sill: 164,
  nugget: 0.05,
  maxDistance: 1.8e6,
  reducer: ee.Reducer.mean()
});
// Display the results on the map.
Map.setCenter(-137.47, -30.47, 3);
Map.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');
  
    
  
  
    
  
  
  
  
    
  
    
  Python 設定
  請參閱 
    Python 環境頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee.Image('ECMWF/ERA5/MONTHLY/202006').select(
    ['mean_2m_air_temperature'], ['tmean']
)
# Region of interest: South Pacific Ocean.
roi = ee.Geometry.Polygon(
    [[
        [-156.053, -16.240],
        [-156.053, -44.968],
        [-118.633, -44.968],
        [-118.633, -16.240],
    ]],
    None,
    False,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True)
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc.kriging(
    propertyName='tmean',
    shape='gaussian',
    range=2.8e6,
    sill=164,
    nugget=0.05,
    maxDistance=1.8e6,
    reducer=ee.Reducer.mean(),
)
# Display the results on the map.
m = geemap.Map()
m.set_center(-137.47, -30.47, 3)
m.add_layer(
    tmean_img,
    {'min': 279, 'max': 300, 'min': 279, 'max': 300},
    'Temperature (K)',
)
m
  
  
  
  
  
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
  上次更新時間:2025-10-24 (世界標準時間)。
  
  
  
    
      [null,null,["上次更新時間:2025-10-24 (世界標準時間)。"],[],["The `kriging` method interpolates a surface from a `FeatureCollection` by sampling a Kriging estimator at each pixel, returning an `Image`. Key parameters include: `propertyName` (numeric property to estimate), `shape` (semivariogram shape), `range`, `sill`, and `nugget` (semivariogram values). `maxDistance` limits feature inclusion in pixel calculations. An optional `reducer` handles overlapping points. Example demonstrates creating a temperature surface from sampled points, setting Kriging parameters, and visualizing the result.\n"]]