공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
ee.FeatureCollection.reduceToImage
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
각 픽셀과 교차하는 모든 피처의 선택된 속성에 리듀서를 적용하여 피처 컬렉션에서 이미지를 만듭니다.
사용 | 반환 값 |
---|
FeatureCollection.reduceToImage(properties, reducer) | 이미지 |
인수 | 유형 | 세부정보 |
---|
다음과 같은 경우: collection | FeatureCollection | 각 출력 픽셀과 교차할 기능 모음입니다. |
properties | 목록 | 각 기능에서 선택하여 리듀서에 전달할 속성입니다. |
reducer | 감소기 | 교차하는 각 기능의 속성을 픽셀에 저장할 최종 결과로 결합하는 리듀서입니다. |
예
코드 편집기 (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
// Create an image from features; pixel values are determined from reduction of
// property values of the features intersecting each pixel.
var image = fc.reduceToImage({
properties: ['gwh_estimt'],
reducer: ee.Reducer.sum()
});
// The goal is to sum the electricity generated in 2015 for the power plants
// intersecting 10 km cells and view the result as a map layer.
// ee.FeatureCollection.reduceToImage does not allow the image projection to be
// set because it is waiting on downstream functions that include "crs",
// "scale", and "crsTransform" parameters to define it (e.g., Export.image.*).
// Here, we'll force the projection with ee.Image.reproject so the result can be
// viewed in the map. Note that using small scales with reproject while viewing
// large regions breaks the features that make Earth Engine fast and may result
// in poor performance and/or errors.
image = image.reproject('EPSG:3035', null, 10000);
// Display the image on the map.
Map.setCenter(4.3376, 50.947, 8);
Map.setLocked(true);
Map.addLayer(
image.updateMask(image.gt(0)),
{min: 0, max: 2000, palette: ['yellow', 'orange', 'red']},
'Total estimated annual electricity generation, 2015');
Map.addLayer(fc, null, 'Belgian power plants');
Python 설정
Python API 및 geemap
를 사용한 대화형 개발에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"'
)
# Create an image from features pixel values are determined from reduction of
# property values of the features intersecting each pixel.
image = fc.reduceToImage(properties=['gwh_estimt'], reducer=ee.Reducer.sum())
# The goal is to sum the electricity generated in 2015 for the power plants
# intersecting 10 km cells and view the result as a map layer.
# ee.FeatureCollection.reduceToImage does not allow the image projection to be
# set because it is waiting on downstream functions that include "crs",
# "scale", and "crsTransform" parameters to define it (e.g., Export.image.*).
# Here, we'll force the projection with ee.Image.reproject so the result can be
# viewed in the map. Note that using small scales with reproject while viewing
# large regions breaks the features that make Earth Engine fast and may result
# in poor performance and/or errors.
image = image.reproject('EPSG:3035', None, 10000)
# Display the image on the map.
m = geemap.Map()
m.set_center(4.3376, 50.947, 8)
m.add_layer(
image.updateMask(image.gt(0)),
{'min': 0, 'max': 2000, 'palette': ['yellow', 'orange', 'red']},
'Total estimated annual electricity generation, 2015',
)
m.add_layer(fc, None, 'Belgian power plants')
m
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[[["\u003cp\u003e\u003ccode\u003ereduceToImage\u003c/code\u003e creates an image from a FeatureCollection by applying a reducer to feature properties within each pixel.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer combines the properties of features intersecting a pixel into a single pixel value in the output image.\u003c/p\u003e\n"],["\u003cp\u003eYou must specify the properties to include and the reducer to use when calling \u003ccode\u003ereduceToImage\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eOutput image projection is determined by subsequent operations like \u003ccode\u003ereproject\u003c/code\u003e or \u003ccode\u003eExport\u003c/code\u003e.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.reduceToImage\n\nCreates an image from a feature collection by applying a reducer over the selected properties of all the features that intersect each pixel.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|---------|\n| FeatureCollection.reduceToImage`(properties, reducer)` | Image |\n\n| Argument | Type | Details |\n|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------|\n| this: `collection` | FeatureCollection | Feature collection to intersect with each output pixel. |\n| `properties` | List | Properties to select from each feature and pass into the reducer. |\n| `reducer` | Reducer | A Reducer to combine the properties of each intersecting feature into a final result to store in the pixel. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\n// Create an image from features; pixel values are determined from reduction of\n// property values of the features intersecting each pixel.\nvar image = fc.reduceToImage({\n properties: ['gwh_estimt'],\n reducer: ee.Reducer.sum()\n});\n\n// The goal is to sum the electricity generated in 2015 for the power plants\n// intersecting 10 km cells and view the result as a map layer.\n// ee.FeatureCollection.reduceToImage does not allow the image projection to be\n// set because it is waiting on downstream functions that include \"crs\",\n// \"scale\", and \"crsTransform\" parameters to define it (e.g., Export.image.*).\n// Here, we'll force the projection with ee.Image.reproject so the result can be\n// viewed in the map. Note that using small scales with reproject while viewing\n// large regions breaks the features that make Earth Engine fast and may result\n// in poor performance and/or errors.\nimage = image.reproject('EPSG:3035', null, 10000);\n\n// Display the image on the map.\nMap.setCenter(4.3376, 50.947, 8);\nMap.setLocked(true);\nMap.addLayer(\n image.updateMask(image.gt(0)),\n {min: 0, max: 2000, palette: ['yellow', 'orange', 'red']},\n 'Total estimated annual electricity generation, 2015');\nMap.addLayer(fc, null, 'Belgian power plants');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"'\n)\n\n# Create an image from features pixel values are determined from reduction of\n# property values of the features intersecting each pixel.\nimage = fc.reduceToImage(properties=['gwh_estimt'], reducer=ee.Reducer.sum())\n\n# The goal is to sum the electricity generated in 2015 for the power plants\n# intersecting 10 km cells and view the result as a map layer.\n# ee.FeatureCollection.reduceToImage does not allow the image projection to be\n# set because it is waiting on downstream functions that include \"crs\",\n# \"scale\", and \"crsTransform\" parameters to define it (e.g., Export.image.*).\n# Here, we'll force the projection with ee.Image.reproject so the result can be\n# viewed in the map. Note that using small scales with reproject while viewing\n# large regions breaks the features that make Earth Engine fast and may result\n# in poor performance and/or errors.\nimage = image.reproject('EPSG:3035', None, 10000)\n\n# Display the image on the map.\nm = geemap.Map()\nm.set_center(4.3376, 50.947, 8)\nm.add_layer(\n image.updateMask(image.gt(0)),\n {'min': 0, 'max': 2000, 'palette': ['yellow', 'orange', 'red']},\n 'Total estimated annual electricity generation, 2015',\n)\nm.add_layer(fc, None, 'Belgian power plants')\nm\n```"]]