ee.FeatureCollection.runBigQuery

Bir BigQuery sorgusu çalıştırır, sonuçları getirir ve FeatureCollection olarak sunar.

Kullanımİadeler
ee.FeatureCollection.runBigQuery(query, geometryColumn, maxBytesBilled)FeatureCollection
Bağımsız DeğişkenTürAyrıntılar
queryDizeBigQuery kaynaklarında gerçekleştirilecek GoogleSQL sorgusu.
geometryColumnDize, varsayılan: nullAna özellik geometrisi olarak kullanılacak sütunun adı. Belirtilmemişse ilk geometri sütunu kullanılır.
maxBytesBilledUzun, varsayılan: 100000000000Sorgu işlenirken faturalandırılan maksimum bayt sayısı. Bu sınırı aşan BigQuery işleri başarısız olur ve faturalandırılmaz.

Örnekler

Kod Düzenleyici (JavaScript)

// Get places from Overture Maps Dataset in BigQuery public data.
Map.setCenter(-3.69, 40.41, 12)
var mapGeometry= ee.Geometry(Map.getBounds(true)).toGeoJSONString();
var sql =
    "SELECT geometry, names.primary as name, categories.primary as category "
 + " FROM bigquery-public-data.overture_maps.place "
 + " WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('" + mapGeometry+ "'))";

var features = ee.FeatureCollection.runBigQuery({
  query: sql,
  geometryColumn: 'geometry'
});

// Display all relevant features on the map.
Map.addLayer(features,
             {'color': 'black'},
             'Places from Overture Maps Dataset');


// Create a histogram of the categories and print it.
var propertyOfInterest = 'category';
var histogram = features.filter(ee.Filter.notNull([propertyOfInterest]))
                        .aggregate_histogram(propertyOfInterest);
print(histogram);

// Create a frequency chart for the histogram.
var categories = histogram.keys().map(function(k) {
  return ee.Feature(null, {
    key: k,
    value: histogram.get(k)
  });
});
var sortedCategories = ee.FeatureCollection(categories).sort('value', false);
print(ui.Chart.feature.byFeature(sortedCategories).setChartType('Table'));

Python kurulumu

Python API'si ve etkileşimli geliştirme için geemap kullanımı hakkında bilgi edinmek üzere Python Ortamı sayfasına bakın.

import ee
import geemap.core as geemap

Colab (Python)

import json
import pandas as pd

# Get places from Overture Maps Dataset in BigQuery public data.
location = ee.Geometry.Point(-3.69, 40.41)
map_geometry = json.dumps(location.buffer(5e3).getInfo())

sql = f"""SELECT geometry, names.primary as name, categories.primary as category
FROM bigquery-public-data.overture_maps.place
WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('{map_geometry}'))"""

features = ee.FeatureCollection.runBigQuery(
    query=sql, geometryColumn="geometry"
)

# Display all relevant features on the map.
m = geemap.Map()
m.center_object(location, 13)
m.add_layer(features, {'color': 'black'}, 'Places from Overture Maps Dataset')
display(m)

# Create a histogram of the place categories.
property_of_interest = 'category'
histogram = (
    features.filter(
        ee.Filter.notNull([property_of_interest])
    ).aggregate_histogram(property_of_interest)
).getInfo()

# Display the histogram as a pandas DataFrame.
df = pd.DataFrame(list(histogram.items()), columns=['category', 'frequency'])
df = df.sort_values(by=['frequency'], ascending=False, ignore_index=True)
display(df)