公告:所有在 
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.Filter.lessThan
    
    
      
    
    
      
      使用集合让一切井井有条
    
    
      
      根据您的偏好保存内容并对其进行分类。
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
创建一种一元或二元过滤条件,如果左操作数小于右操作数,则通过过滤。
| 用法 | 返回 | 
|---|
| ee.Filter.lessThan(leftField, rightValue, rightField, leftValue) | 过滤 | 
| 参数 | 类型 | 详细信息 | 
|---|
| leftField | 字符串,默认值:null | 左操作数的选择器。如果指定了 leftValue,则不应指定此参数。 | 
| rightValue | 对象,默认值:null | 右操作数的值。如果指定了 rightField,则不应指定此字段。 | 
| rightField | 字符串,默认值:null | 用于选择右操作数的选择器。如果指定了 rightValue,则不应指定此参数。 | 
| leftValue | 对象,默认值:null | 左操作数的值。如果指定了 leftField,则不应指定此字段。 | 
  
  
  示例
  
    
  
  
    
    
  
  
  
  
    
    
    
      代码编辑器 (JavaScript)
    
    
  // Field site vegetation characteristics from projects in western USA.
var fc = ee.FeatureCollection('BLM/AIM/v1/TerrADat/TerrestrialAIM')
  .filter('ProjectName == "Colorado NWDO Kremmling FO 2016"');
// Display field plots on the map.
Map.setCenter(-107.792, 39.871, 7);
Map.addLayer(fc);
// Compare the per-feature values of two properties and filter the collection
// based on the results of various relational expressions. The two properties
// to compare are invasive and non-invasive annual forb cover at each plot.
var leftProperty = 'InvAnnForbCover_AH';
var rightProperty = 'NonInvAnnForbCover_AH';
print('Plots where invasive forb cover is…');
print('…EQUAL to non-invasive cover',
      fc.filter(ee.Filter.equals(
        {leftField: leftProperty, rightField: rightProperty})));
print('…NOT EQUAL to non-invasive cover',
      fc.filter(ee.Filter.notEquals(
        {leftField: leftProperty, rightField: rightProperty})));
print('…LESS THAN non-invasive cover',
      fc.filter(ee.Filter.lessThan(
        {leftField: leftProperty, rightField: rightProperty})));
print('…LESS THAN OR EQUAL to non-invasive cover',
      fc.filter(ee.Filter.lessThanOrEquals(
        {leftField: leftProperty, rightField: rightProperty})));
print('…GREATER THAN non-invasive cover',
      fc.filter(ee.Filter.greaterThan(
        {leftField: leftProperty, rightField: rightProperty})));
print('…GREATER THAN OR EQUAL to non-invasive cover',
      fc.filter(ee.Filter.greaterThanOrEquals(
        {leftField: leftProperty, rightField: rightProperty})));
print('…is not greater than 10 percent different than non-invasive cover',
      fc.filter(ee.Filter.maxDifference(
        {difference: 10, leftField: leftProperty, rightField: rightProperty})));
// Instead of comparing values of two feature properties using the leftField
// and rightField parameters, you can compare a property value (leftProperty)
// against a constant value (rightValue).
print('Plots where invasive forb cover is greater than 20%',
      fc.filter(ee.Filter.greaterThan(
        {leftField: leftProperty, rightValue: 20})));
// You can also swap the operands to assign the constant to the left side of
// the relational expression (leftValue) and the feature property on the right
// (rightField). Here, we get the complement of the previous example.
print('Plots where 20% is greater than invasive forb cover.',
      fc.filter(ee.Filter.greaterThan(
        {leftValue: 20, rightField: leftProperty})));
// Binary filters are useful in joins. For example, group all same-site plots
// together using a saveAll join.
var groupingProp = 'SiteID';
var sitesFc = fc.distinct(groupingProp);
var joinFilter = ee.Filter.equals(
  {leftField: groupingProp, rightField: groupingProp});
var groupedPlots = ee.Join.saveAll('site_plots').apply(sitesFc, fc, joinFilter);
print('List of plots in first site', groupedPlots.first().get('site_plots'));
  
    
  
  
    
  
  
  
  
    
  
    
  Python 设置
  如需了解 Python API 和如何使用 geemap 进行交互式开发,请参阅 
    Python 环境页面。
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # Field site vegetation characteristics from projects in western USA.
fc = ee.FeatureCollection('BLM/AIM/v1/TerrADat/TerrestrialAIM').filter(
    'ProjectName == "Colorado NWDO Kremmling FO 2016"'
)
# Display field plots on the map.
m = geemap.Map()
m.set_center(-107.792, 39.871, 7)
m.add_layer(fc)
display(m)
# Compare the per-feature values of two properties and filter the collection
# based on the results of various relational expressions. The two properties
# to compare are invasive and non-invasive annual forb cover at each plot.
left_property = 'InvAnnForbCover_AH'
right_property = 'NonInvAnnForbCover_AH'
display('Plots where invasive forb cover is…')
display(
    '…EQUAL to non-invasive cover',
    fc.filter(
        ee.Filter.equals(leftField=left_property, rightField=right_property)
    ),
)
display(
    '…NOT EQUAL to non-invasive cover',
    fc.filter(
        ee.Filter.notEquals(leftField=left_property, rightField=right_property)
    ),
)
display(
    '…LESS THAN non-invasive cover',
    fc.filter(
        ee.Filter.lessThan(leftField=left_property, rightField=right_property)
    ),
)
display(
    '…LESS THAN OR EQUAL to non-invasive cover',
    fc.filter(
        ee.Filter.lessThanOrEquals(
            leftField=left_property, rightField=right_property
        )
    ),
)
display(
    '…GREATER THAN non-invasive cover',
    fc.filter(
        ee.Filter.greaterThan(
            leftField=left_property, rightField=right_property
        )
    ),
)
display(
    '…GREATER THAN OR EQUAL to non-invasive cover',
    fc.filter(
        ee.Filter.greaterThanOrEquals(
            leftField=left_property, rightField=right_property
        )
    ),
)
display(
    '…is not greater than 10 percent different than non-invasive cover',
    fc.filter(
        ee.Filter.maxDifference(
            difference=10, leftField=left_property, rightField=right_property
        )
    ),
)
# Instead of comparing values of two feature properties using the leftField
# and rightField parameters, you can compare a property value (left_property)
# against a constant value (rightValue).
display(
    'Plots where invasive forb cover is greater than 20%',
    fc.filter(ee.Filter.greaterThan(leftField=left_property, rightValue=20)),
)
# You can also swap the operands to assign the constant to the left side of
# the relational expression (leftValue) and the feature property on the right
# (rightField). Here, we get the complement of the previous example.
display(
    'Plots where 20% is greater than invasive forb cover.',
    fc.filter(ee.Filter.greaterThan(leftValue=20, rightField=left_property)),
)
# Binary filters are useful in joins. For example, group all same-site plots
# together using a saveAll join.
grouping_prop = 'SiteID'
sites_fc = fc.distinct(grouping_prop)
join_filter = ee.Filter.equals(
    leftField=grouping_prop, rightField=grouping_prop
)
grouped_plots = ee.Join.saveAll('site_plots').apply(sites_fc, fc, join_filter)
display('List of plots in first site', grouped_plots.first().get('site_plots'))
  
  
  
  
  
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
  最后更新时间 (UTC):2025-07-26。
  
  
  
    
      [null,null,["最后更新时间 (UTC):2025-07-26。"],[],[]]