公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.Geometry.BBox.buffer
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
傳回緩衝指定距離的輸入內容。如果距離為正值,幾何圖形會擴大;如果距離為負值,幾何圖形會縮小。
用量 | 傳回 |
---|
BBox.buffer(distance, maxError, proj) | 幾何圖形 |
引數 | 類型 | 詳細資料 |
---|
這個:geometry | 幾何圖形 | 正在緩衝處理的幾何圖形。 |
distance | 浮點值 | 緩衝區的距離,可能為負值。如未指定投影,則單位為公尺。否則單位會採用投影的座標系統。 |
maxError | ErrorMargin,預設值:null | 近似緩衝圓圈和執行任何必要重新投影時,可容許的最大誤差量。如未指定,則預設為距離的 1%。 |
proj | 投影,預設值:null | 如果指定,緩衝區會在這個投影中執行,距離會解讀為這個投影的座標系統單位。否則,系統會將距離解讀為公尺,並在球體座標系統中執行緩衝處理。 |
範例
程式碼編輯器 (JavaScript)
// Define a BBox object.
var bBox = ee.Geometry.BBox(-122.09, 37.42, -122.08, 37.43);
// Apply the buffer method to the BBox object.
var bBoxBuffer = bBox.buffer({'distance': 100});
// Print the result to the console.
print('bBox.buffer(...) =', bBoxBuffer);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(bBox,
{'color': 'black'},
'Geometry [black]: bBox');
Map.addLayer(bBoxBuffer,
{'color': 'red'},
'Result [red]: bBox.buffer');
Python 設定
請參閱
Python 環境頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# Define a BBox object.
bbox = ee.Geometry.BBox(-122.09, 37.42, -122.08, 37.43)
# Apply the buffer method to the BBox object.
bbox_buffer = bbox.buffer(distance=100)
# Print the result.
display('bbox.buffer(...) =', bbox_buffer)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(bbox, {'color': 'black'}, 'Geometry [black]: bbox')
m.add_layer(bbox_buffer, {'color': 'red'}, 'Result [red]: bbox.buffer')
m
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003e\u003ccode\u003ebuffer()\u003c/code\u003e returns a Geometry that is the input geometry expanded or contracted by a specified distance.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003edistance\u003c/code\u003e parameter determines the buffer size, with positive values expanding and negative values contracting the geometry.\u003c/p\u003e\n"],["\u003cp\u003eBuffering can be performed in a specified projection using the \u003ccode\u003eproj\u003c/code\u003e parameter, or in meters using a spherical coordinate system if no projection is given.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003emaxError\u003c/code\u003e parameter controls the approximation accuracy during buffering and reprojection, defaulting to 1% of the distance if not specified.\u003c/p\u003e\n"]]],["The `buffer` method expands or contracts a geometry by a specified distance. A positive distance expands the geometry, while a negative distance contracts it. The distance unit defaults to meters but can be specified via a projection. Users can define `maxError` for approximation tolerance. The method returns a new Geometry. Examples are provided in both JavaScript and Python to demonstrate buffering a BBox object and visualize the results.\n"],null,["# ee.Geometry.BBox.buffer\n\nReturns the input buffered by a given distance. If the distance is positive, the geometry is expanded, and if the distance is negative, the geometry is contracted.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------|----------|\n| BBox.buffer`(distance, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | The geometry being buffered. |\n| `distance` | Float | The distance of the buffering, which may be negative. If no projection is specified, the unit is meters. Otherwise the unit is in the coordinate system of the projection. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when approximating the buffering circle and performing any necessary reprojection. If unspecified, defaults to 1% of the distance. |\n| `proj` | Projection, default: null | If specified, the buffering will be performed in this projection and the distance will be interpreted as units of the coordinate system of this projection. Otherwise the distance is interpereted as meters and the buffering is performed in a spherical coordinate system. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a BBox object.\nvar bBox = ee.Geometry.BBox(-122.09, 37.42, -122.08, 37.43);\n\n// Apply the buffer method to the BBox object.\nvar bBoxBuffer = bBox.buffer({'distance': 100});\n\n// Print the result to the console.\nprint('bBox.buffer(...) =', bBoxBuffer);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(bBox,\n {'color': 'black'},\n 'Geometry [black]: bBox');\nMap.addLayer(bBoxBuffer,\n {'color': 'red'},\n 'Result [red]: bBox.buffer');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a BBox object.\nbbox = ee.Geometry.BBox(-122.09, 37.42, -122.08, 37.43)\n\n# Apply the buffer method to the BBox object.\nbbox_buffer = bbox.buffer(distance=100)\n\n# Print the result.\ndisplay('bbox.buffer(...) =', bbox_buffer)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(bbox, {'color': 'black'}, 'Geometry [black]: bbox')\nm.add_layer(bbox_buffer, {'color': 'red'}, 'Result [red]: bbox.buffer')\nm\n```"]]