Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin Earth Engine erişimini sürdürmek için
ticari olmayan uygunluğu doğrulaması gerekir.
ee.Geometry.LinearRing.buffer
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Belirli bir mesafeyle arabelleğe alınan girişi döndürür. Mesafe pozitifse geometri genişletilir, negatifse daraltılır.
Kullanım | İadeler |
---|
LinearRing.buffer(distance, maxError, proj) | Geometri |
Bağımsız Değişken | Tür | Ayrıntılar |
---|
bu: geometry | Geometri | Arabelleğe alınan geometri. |
distance | Kayan | Arabelleğe almanın mesafesi (negatif olabilir). Projeksiyon belirtilmemişse birim metredir. Aksi takdirde birim, projeksiyonun koordinat sistemindedir. |
maxError | ErrorMargin, varsayılan: null | Arabelleğe alma çemberi yaklaştırılırken ve gerekli yeniden projeksiyon gerçekleştirilirken tolere edilen maksimum hata miktarı. Belirtilmezse varsayılan olarak mesafenin% 1'i kullanılır. |
proj | Projeksiyon, varsayılan: null | Belirtilirse arabelleğe alma işlemi bu projeksiyonda gerçekleştirilir ve mesafe, bu projeksiyonun koordinat sisteminin birimleri olarak yorumlanır. Aksi takdirde mesafe metre olarak yorumlanır ve arabelleğe alma işlemi küresel koordinat sisteminde gerçekleştirilir. |
Örnekler
Kod Düzenleyici (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Apply the buffer method to the LinearRing object.
var linearRingBuffer = linearRing.buffer({'distance': 100});
// Print the result to the console.
print('linearRing.buffer(...) =', linearRingBuffer);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(linearRingBuffer,
{'color': 'red'},
'Result [red]: linearRing.buffer');
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Apply the buffer method to the LinearRing object.
linearring_buffer = linearring.buffer(distance=100)
# Print the result.
display('linearring.buffer(...) =', linearring_buffer)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(
linearring_buffer, {'color': 'red'}, 'Result [red]: linearring.buffer'
)
m
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[[["\u003cp\u003eReturns a Geometry representing the input LinearRing expanded or contracted by a specified distance.\u003c/p\u003e\n"],["\u003cp\u003eA positive distance expands the geometry while a negative distance contracts it.\u003c/p\u003e\n"],["\u003cp\u003eThe buffering can be performed using meters or a specified projection's units.\u003c/p\u003e\n"],["\u003cp\u003eAn optional error margin controls the accuracy of the buffer approximation.\u003c/p\u003e\n"]]],["The `buffer` method expands or contracts a geometry by a specified distance. The `distance` parameter determines the buffer's size; positive values expand, while negative values contract. `maxError` sets the tolerance for approximation and reprojection errors, defaulting to 1% of the distance. An optional `proj` parameter defines the coordinate system, otherwise, distance is measured in meters using a spherical system. The method takes a geometry, floats for `distance` and `maxError` and a `projection` for the `proj` parameter. The result is a new `geometry`.\n"],null,["# ee.Geometry.LinearRing.buffer\n\nReturns the input buffered by a given distance. If the distance is positive, the geometry is expanded, and if the distance is negative, the geometry is contracted.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|----------|\n| LinearRing.buffer`(distance, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | The geometry being buffered. |\n| `distance` | Float | The distance of the buffering, which may be negative. If no projection is specified, the unit is meters. Otherwise the unit is in the coordinate system of the projection. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when approximating the buffering circle and performing any necessary reprojection. If unspecified, defaults to 1% of the distance. |\n| `proj` | Projection, default: null | If specified, the buffering will be performed in this projection and the distance will be interpreted as units of the coordinate system of this projection. Otherwise the distance is interpereted as meters and the buffering is performed in a spherical coordinate system. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Apply the buffer method to the LinearRing object.\nvar linearRingBuffer = linearRing.buffer({'distance': 100});\n\n// Print the result to the console.\nprint('linearRing.buffer(...) =', linearRingBuffer);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(linearRingBuffer,\n {'color': 'red'},\n 'Result [red]: linearRing.buffer');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Apply the buffer method to the LinearRing object.\nlinearring_buffer = linearring.buffer(distance=100)\n\n# Print the result.\ndisplay('linearring.buffer(...) =', linearring_buffer)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(\n linearring_buffer, {'color': 'red'}, 'Result [red]: linearring.buffer'\n)\nm\n```"]]