AI-generated Key Takeaways
-
The
centroidmethod returns a point at the center of the highest-dimension components of a geometry, ignoring lower-dimensional components. -
It can be applied to a
LinearRingand takes optionalmaxErrorandprojarguments. -
The result of the
centroidmethod is aGeometry.
| Usage | Returns |
|---|---|
LinearRing.centroid(maxError, proj) | Geometry |
| Argument | Type | Details |
|---|---|---|
this: geometry | Geometry | Calculates the centroid of this geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object. var linearRing = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]); // Apply the centroid method to the LinearRing object. var linearRingCentroid = linearRing.centroid({'maxError': 1}); // Print the result to the console. print('linearRing.centroid(...) =', linearRingCentroid); // Display relevant geometries on the map. Map.setCenter(-122.085, 37.422, 15); Map.addLayer(linearRing, {'color': 'black'}, 'Geometry [black]: linearRing'); Map.addLayer(linearRingCentroid, {'color': 'red'}, 'Result [red]: linearRing.centroid');
import ee import geemap.core as geemap
Colab (Python)
# Define a LinearRing object. linearring = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]] ) # Apply the centroid method to the LinearRing object. linearring_centroid = linearring.centroid(maxError=1) # Print the result. display('linearring.centroid(...) =', linearring_centroid) # Display relevant geometries on the map. m = geemap.Map() m.set_center(-122.085, 37.422, 15) m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring') m.add_layer( linearring_centroid, {'color': 'red'}, 'Result [red]: linearring.centroid' ) m