Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
ee.Geometry.LinearRing.distance
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Retorna a distância mínima entre duas geometrias.
Uso | Retorna |
---|
LinearRing.distance(right, maxError, proj, spherical) | Ponto flutuante |
Argumento | Tipo | Detalhes |
---|
left | Geometria | A geometria usada como o operando à esquerda da operação. |
right | Geometria | A geometria usada como o operando direito da operação. |
maxError | ErrorMargin, padrão: null | A quantidade máxima de erro tolerada ao realizar qualquer reprojeção necessária. |
proj | Projeção, padrão: nulo | A projeção em que a operação será realizada. Se não for especificado, a operação será realizada em um sistema de coordenadas esféricas, e as distâncias lineares serão em metros na esfera. |
spherical | Booleano, padrão: falso | Se verdadeiro, o cálculo será feito na esfera unitária. Se for falso, o cálculo será elíptico, considerando o achatamento da Terra. Será ignorado se proj for especificado. O padrão é false |
Exemplos
Editor de código (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Define other inputs.
var inputGeom = ee.Geometry.Point(-122.090, 37.423);
// Apply the distance method to the LinearRing object.
var linearRingDistance = linearRing.distance({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('linearRing.distance(...) =', linearRingDistance);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e o uso de
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Define other inputs.
input_geom = ee.Geometry.Point(-122.090, 37.423)
# Apply the distance method to the LinearRing object.
linearring_distance = linearring.distance(right=input_geom, maxError=1)
# Print the result.
display('linearring.distance(...) =', linearring_distance)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-25 UTC.
[null,null,["Última atualização 2025-07-25 UTC."],[[["\u003cp\u003e\u003ccode\u003edistance()\u003c/code\u003e calculates the minimum distance between two geometries, with one being a LinearRing.\u003c/p\u003e\n"],["\u003cp\u003eThe distance is returned as a float and can be calculated using a specified projection or spherically in meters.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters allow for controlling the error margin (\u003ccode\u003emaxError\u003c/code\u003e) and the projection (\u003ccode\u003eproj\u003c/code\u003e) used in the calculation.\u003c/p\u003e\n"],["\u003cp\u003eThis function is accessible within both the JavaScript and Python Earth Engine APIs.\u003c/p\u003e\n"]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional parameters: `maxError` (tolerated error), `proj` (projection for calculation), and `spherical` (true for unit sphere calculation, false for elliptical). The function outputs a float representing the distance. The examples show how to use the function in JavaScript and Python to compute and visualize the distance between a `LinearRing` and a `Point` geometry.\n"],null,["# ee.Geometry.LinearRing.distance\n\nReturns the minimum distance between two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------------------------------|---------|\n| LinearRing.distance`(right, `*maxError* `, `*proj* `, `*spherical*`)` | Float |\n\n| Argument | Type | Details |\n|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n| `spherical` | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.Point(-122.090, 37.423);\n\n// Apply the distance method to the LinearRing object.\nvar linearRingDistance = linearRing.distance({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.distance(...) =', linearRingDistance);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Define other inputs.\ninput_geom = ee.Geometry.Point(-122.090, 37.423)\n\n# Apply the distance method to the LinearRing object.\nlinearring_distance = linearring.distance(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('linearring.distance(...) =', linearring_distance)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm\n```"]]