Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin Earth Engine erişimini sürdürmek için
ticari olmayan uygunluğu doğrulaması gerekir.
ee.Geometry.LinearRing.distance
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
İki geometri arasındaki minimum mesafeyi döndürür.
Kullanım | İadeler |
---|
LinearRing.distance(right, maxError, proj, spherical) | Kayan |
Bağımsız Değişken | Tür | Ayrıntılar |
---|
bu: left | Geometri | İşlemin sol operanı olarak kullanılan geometri. |
right | Geometri | İşlemin sağ operanı olarak kullanılan geometri. |
maxError | ErrorMargin, varsayılan: null | Gerekli yeniden projeksiyonlar yapılırken izin verilen maksimum hata miktarı. |
proj | Projeksiyon, varsayılan: null | İşlemin gerçekleştirileceği projeksiyon. Belirtilmemişse işlem küresel bir koordinat sisteminde gerçekleştirilir ve doğrusal mesafeler küre üzerinde metre cinsinden olur. |
spherical | Boole, varsayılan: false | Doğru ise hesaplama birim kürede yapılır. Yanlış ise hesaplama, dünyanın düzleşmesi dikkate alınarak eliptik olur. proj belirtilmişse yoksayılır. Varsayılan değer yanlıştır. |
Örnekler
Kod Düzenleyici (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Define other inputs.
var inputGeom = ee.Geometry.Point(-122.090, 37.423);
// Apply the distance method to the LinearRing object.
var linearRingDistance = linearRing.distance({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('linearRing.distance(...) =', linearRingDistance);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Define other inputs.
input_geom = ee.Geometry.Point(-122.090, 37.423)
# Apply the distance method to the LinearRing object.
linearring_distance = linearring.distance(right=input_geom, maxError=1)
# Print the result.
display('linearring.distance(...) =', linearring_distance)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[[["\u003cp\u003e\u003ccode\u003edistance()\u003c/code\u003e calculates the minimum distance between two geometries, with one being a LinearRing.\u003c/p\u003e\n"],["\u003cp\u003eThe distance is returned as a float and can be calculated using a specified projection or spherically in meters.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters allow for controlling the error margin (\u003ccode\u003emaxError\u003c/code\u003e) and the projection (\u003ccode\u003eproj\u003c/code\u003e) used in the calculation.\u003c/p\u003e\n"],["\u003cp\u003eThis function is accessible within both the JavaScript and Python Earth Engine APIs.\u003c/p\u003e\n"]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional parameters: `maxError` (tolerated error), `proj` (projection for calculation), and `spherical` (true for unit sphere calculation, false for elliptical). The function outputs a float representing the distance. The examples show how to use the function in JavaScript and Python to compute and visualize the distance between a `LinearRing` and a `Point` geometry.\n"],null,["# ee.Geometry.LinearRing.distance\n\nReturns the minimum distance between two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------------------------------|---------|\n| LinearRing.distance`(right, `*maxError* `, `*proj* `, `*spherical*`)` | Float |\n\n| Argument | Type | Details |\n|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n| `spherical` | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.Point(-122.090, 37.423);\n\n// Apply the distance method to the LinearRing object.\nvar linearRingDistance = linearRing.distance({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.distance(...) =', linearRingDistance);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Define other inputs.\ninput_geom = ee.Geometry.Point(-122.090, 37.423)\n\n# Apply the distance method to the LinearRing object.\nlinearring_distance = linearring.distance(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('linearring.distance(...) =', linearring_distance)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm\n```"]]