公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.Geometry.MultiLineString.bounds
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
傳回幾何的邊界矩形。
用量 | 傳回 |
---|
MultiLineString.bounds(maxError, proj) | 幾何圖形 |
引數 | 類型 | 詳細資料 |
---|
這個:geometry | 幾何圖形 | 傳回這個幾何圖形的周框。 |
maxError | ErrorMargin,預設值:null | 執行任何必要重投影時可容許的最大誤差量。 |
proj | 投影,預設值:null | 如果指定,結果會以這個投影方式呈現。否則會採用 EPSG:4326。 |
範例
程式碼編輯器 (JavaScript)
// Define a MultiLineString object.
var multiLineString = ee.Geometry.MultiLineString(
[[[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],
[[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]]]);
// Apply the bounds method to the MultiLineString object.
var multiLineStringBounds = multiLineString.bounds();
// Print the result to the console.
print('multiLineString.bounds(...) =', multiLineStringBounds);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiLineString,
{'color': 'black'},
'Geometry [black]: multiLineString');
Map.addLayer(multiLineStringBounds,
{'color': 'red'},
'Result [red]: multiLineString.bounds');
Python 設定
請參閱
Python 環境頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# Define a MultiLineString object.
multilinestring = ee.Geometry.MultiLineString([
[[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],
[[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]],
])
# Apply the bounds method to the MultiLineString object.
multilinestring_bounds = multilinestring.bounds()
# Print the result.
display('multilinestring.bounds(...) =', multilinestring_bounds)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multilinestring, {'color': 'black'}, 'Geometry [black]: multilinestring'
)
m.add_layer(
multilinestring_bounds,
{'color': 'red'},
'Result [red]: multilinestring.bounds',
)
m
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003eReturns the bounding rectangle (Geometry) that encompasses the entire MultiLineString geometry.\u003c/p\u003e\n"],["\u003cp\u003eAccepts optional \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e arguments for reprojection and output projection control.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003emaxError\u003c/code\u003e manages the error tolerance during reprojection, while \u003ccode\u003eproj\u003c/code\u003e defines the output projection (defaults to EPSG:4326).\u003c/p\u003e\n"],["\u003cp\u003eUseful for determining the overall spatial extent of a MultiLineString.\u003c/p\u003e\n"]]],["The `bounds` method calculates and returns the bounding rectangle of a given geometry. It accepts optional `maxError` and `proj` arguments to specify error tolerance and projection, respectively, defaulting to `null` and `EPSG:4326`. The method is demonstrated using a `MultiLineString` object in both JavaScript and Python examples. These examples create a `MultiLineString`, compute its bounding rectangle, and display both geometries on a map.\n"],null,["# ee.Geometry.MultiLineString.bounds\n\nReturns the bounding rectangle of the geometry.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------|----------|\n| MultiLineString.bounds`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-----------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Return the bounding box of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a MultiLineString object.\nvar multiLineString = ee.Geometry.MultiLineString(\n [[[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],\n [[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]]]);\n\n// Apply the bounds method to the MultiLineString object.\nvar multiLineStringBounds = multiLineString.bounds();\n\n// Print the result to the console.\nprint('multiLineString.bounds(...) =', multiLineStringBounds);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiLineString,\n {'color': 'black'},\n 'Geometry [black]: multiLineString');\nMap.addLayer(multiLineStringBounds,\n {'color': 'red'},\n 'Result [red]: multiLineString.bounds');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a MultiLineString object.\nmultilinestring = ee.Geometry.MultiLineString([\n [[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],\n [[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]],\n])\n\n# Apply the bounds method to the MultiLineString object.\nmultilinestring_bounds = multilinestring.bounds()\n\n# Print the result.\ndisplay('multilinestring.bounds(...) =', multilinestring_bounds)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multilinestring, {'color': 'black'}, 'Geometry [black]: multilinestring'\n)\nm.add_layer(\n multilinestring_bounds,\n {'color': 'red'},\n 'Result [red]: multilinestring.bounds',\n)\nm\n```"]]