Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.Image.arrayFlatten
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Converte un'immagine a banda singola di pixel multidimensionali di forma uguale in un'immagine di pixel scalari, con una banda per ogni elemento dell'array.
Utilizzo | Resi |
---|
Image.arrayFlatten(coordinateLabels, separator) | Immagine |
Argomento | Tipo | Dettagli |
---|
questo: image | Immagine | Immagine di pixel multidimensionali da appiattire. |
coordinateLabels | Elenco | Nome di ogni posizione lungo ogni asse. Ad esempio, gli array 2x2 con assi che significano "giorno" e "colore" potrebbero avere etichette come [['monday', 'tuesday'], ['red', 'green']], con conseguenti nomi di bande "monday_red", "monday_green", "tuesday_red" e "tuesday_green". |
separator | Stringa, valore predefinito: "_" | Separatore tra le etichette dell'array nel nome di ogni banda. |
Esempi
Editor di codice (JavaScript)
// A function to print arrays for a selected pixel in the following examples.
function sampArrImg(arrImg) {
var point = ee.Geometry.Point([-121, 42]);
return arrImg.sample(point, 500).first().get('array');
}
// A 1D array image.
var arrayImg1D = ee.Image([0, 1, 2]).toArray();
print('1D array image (pixel)', sampArrImg(arrayImg1D));
// [0, 1, 2]
// Define image band names for a 1D array image with 3 rows. You are labeling
// all rows and columns using a list of lists; the 1st sub list defines labels
// for array rows and the 2nd (if applicable) defines labels for array columns.
var bandNames1D = [['row0', 'row1', 'row2']];
// Flatten the 1D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 0 columns,
// so the result will be a 3-band image.
var imgFrom1Darray = arrayImg1D.arrayFlatten(bandNames1D);
print('Image from 1D array', imgFrom1Darray);
// Make a 2D array image by repeating the 1D array on 2-axis.
var arrayImg2D = arrayImg1D.arrayRepeat(1, 2);
print('2D array image (pixel)', sampArrImg(arrayImg2D));
// [[0, 0],
// [1, 1],
// [2, 2]]
// Define image band names for a 2D array image with 3 rows and 2 columns.
// Recall that you are labeling all rows and columns using a list of lists;
// The 1st sub list defines labels for array rows and the 2nd (if applicable)
// defines labels for array columns.
var bandNames2D = [['row0', 'row1', 'row2'], ['col0', 'col1']];
// Flatten the 2D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 2 columns,
// so the result will be a 6-band image.
var imgFrom2Darray = arrayImg2D.arrayFlatten(bandNames2D);
print('Image from 2D array', imgFrom2Darray);
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
# A function to print arrays for a selected pixel in the following examples.
def samp_arr_img(arr_img):
point = ee.Geometry.Point([-121, 42])
return arr_img.sample(point, 500).first().get('array')
# A 1D array image.
array_img_1d = ee.Image([0, 1, 2]).toArray()
print('1D array image (pixel):', samp_arr_img(array_img_1d).getInfo())
# [0, 1, 2]
# Define image band names for a 1D array image with 3 rows. You are labeling
# all rows and columns using a list of lists; the 1st sub list defines labels
# for array rows and the 2nd (if applicable) defines labels for array columns.
band_names_1d = [['row0', 'row1', 'row2']]
# Flatten the 1D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 0 columns,
# so the result will be a 3-band image.
img_from_1d_array = array_img_1d.arrayFlatten(band_names_1d)
print('Image from 1D array:', img_from_1d_array.getInfo())
# Make a 2D array image by repeating the 1D array on 2-axis.
array_img_2d = array_img_1d.arrayRepeat(1, 2)
print('2D array image (pixel):', samp_arr_img(array_img_2d).getInfo())
# [[0, 0],
# [1, 1],
# [2, 2]]
# Define image band names for a 2D array image with 3 rows and 2 columns.
# Recall that you are labeling all rows and columns using a list of lists;
# The 1st sub list defines labels for array rows and the 2nd (if applicable)
# defines labels for array columns.
band_names_2d = [['row0', 'row1', 'row2'], ['col0', 'col1']]
# Flatten the 2D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 2 columns,
# so the result will be a 6-band image.
img_from_2d_array = array_img_2d.arrayFlatten(band_names_2d)
print('Image from 2D array:', img_from_2d_array.getInfo())
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eImage.arrayFlatten\u003c/code\u003e transforms an image containing multidimensional pixel arrays into a multi-band image with scalar pixel values.\u003c/p\u003e\n"],["\u003cp\u003eEach element of the input array becomes a separate band in the output image.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify custom names for the output bands using the \u003ccode\u003ecoordinateLabels\u003c/code\u003e parameter.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eseparator\u003c/code\u003e parameter allows for customization of the delimiter used in band names derived from array indices.\u003c/p\u003e\n"],["\u003cp\u003eThis function is useful for working with data structured as arrays within an image, such as time series or multi-spectral data organized in matrices.\u003c/p\u003e\n"]]],[],null,["# ee.Image.arrayFlatten\n\nConverts a single-band image of equal-shape multidimensional pixels to an image of scalar pixels, with one band for each element of the array.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------|---------|\n| Image.arrayFlatten`(coordinateLabels, `*separator*`)` | Image |\n\n| Argument | Type | Details |\n|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | Image of multidimensional pixels to flatten. |\n| `coordinateLabels` | List | Name of each position along each axis. For example, 2x2 arrays with axes meaning 'day' and 'color' could have labels like \\[\\['monday', 'tuesday'\\], \\['red', 'green'\\]\\], resulting in band names'monday_red', 'monday_green', 'tuesday_red', and 'tuesday_green'. |\n| `separator` | String, default: \"_\" | Separator between array labels in each band name. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A function to print arrays for a selected pixel in the following examples.\nfunction sampArrImg(arrImg) {\n var point = ee.Geometry.Point([-121, 42]);\n return arrImg.sample(point, 500).first().get('array');\n}\n\n// A 1D array image.\nvar arrayImg1D = ee.Image([0, 1, 2]).toArray();\nprint('1D array image (pixel)', sampArrImg(arrayImg1D));\n// [0, 1, 2]\n\n// Define image band names for a 1D array image with 3 rows. You are labeling\n// all rows and columns using a list of lists; the 1st sub list defines labels\n// for array rows and the 2nd (if applicable) defines labels for array columns.\nvar bandNames1D = [['row0', 'row1', 'row2']];\n\n// Flatten the 1D array image into an image with n bands equal to all\n// combinations of rows and columns. Here, we have 3 rows and 0 columns,\n// so the result will be a 3-band image.\nvar imgFrom1Darray = arrayImg1D.arrayFlatten(bandNames1D);\nprint('Image from 1D array', imgFrom1Darray);\n\n// Make a 2D array image by repeating the 1D array on 2-axis.\nvar arrayImg2D = arrayImg1D.arrayRepeat(1, 2);\nprint('2D array image (pixel)', sampArrImg(arrayImg2D));\n// [[0, 0],\n// [1, 1],\n// [2, 2]]\n\n// Define image band names for a 2D array image with 3 rows and 2 columns.\n// Recall that you are labeling all rows and columns using a list of lists;\n// The 1st sub list defines labels for array rows and the 2nd (if applicable)\n// defines labels for array columns.\nvar bandNames2D = [['row0', 'row1', 'row2'], ['col0', 'col1']];\n\n// Flatten the 2D array image into an image with n bands equal to all\n// combinations of rows and columns. Here, we have 3 rows and 2 columns,\n// so the result will be a 6-band image.\nvar imgFrom2Darray = arrayImg2D.arrayFlatten(bandNames2D);\nprint('Image from 2D array', imgFrom2Darray);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A function to print arrays for a selected pixel in the following examples.\ndef samp_arr_img(arr_img):\n point = ee.Geometry.Point([-121, 42])\n return arr_img.sample(point, 500).first().get('array')\n\n# A 1D array image.\narray_img_1d = ee.Image([0, 1, 2]).toArray()\nprint('1D array image (pixel):', samp_arr_img(array_img_1d).getInfo())\n# [0, 1, 2]\n\n# Define image band names for a 1D array image with 3 rows. You are labeling\n# all rows and columns using a list of lists; the 1st sub list defines labels\n# for array rows and the 2nd (if applicable) defines labels for array columns.\nband_names_1d = [['row0', 'row1', 'row2']]\n\n# Flatten the 1D array image into an image with n bands equal to all\n# combinations of rows and columns. Here, we have 3 rows and 0 columns,\n# so the result will be a 3-band image.\nimg_from_1d_array = array_img_1d.arrayFlatten(band_names_1d)\nprint('Image from 1D array:', img_from_1d_array.getInfo())\n\n# Make a 2D array image by repeating the 1D array on 2-axis.\narray_img_2d = array_img_1d.arrayRepeat(1, 2)\nprint('2D array image (pixel):', samp_arr_img(array_img_2d).getInfo())\n# [[0, 0],\n# [1, 1],\n# [2, 2]]\n\n# Define image band names for a 2D array image with 3 rows and 2 columns.\n# Recall that you are labeling all rows and columns using a list of lists;\n# The 1st sub list defines labels for array rows and the 2nd (if applicable)\n# defines labels for array columns.\nband_names_2d = [['row0', 'row1', 'row2'], ['col0', 'col1']]\n\n# Flatten the 2D array image into an image with n bands equal to all\n# combinations of rows and columns. Here, we have 3 rows and 2 columns,\n# so the result will be a 6-band image.\nimg_from_2d_array = array_img_2d.arrayFlatten(band_names_2d)\nprint('Image from 2D array:', img_from_2d_array.getInfo())\n```"]]