ee.Image.expression
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
הפונקציה מעריכה ביטוי אריתמטי בתמונה, שיכול לכלול תמונות נוספות.
הפסים של תמונת הקלט הראשית זמינים באמצעות הפונקציה המובנית b(), כ-b(0) או b('band_name').
המשתנים בביטוי מתפרשים כפרמטרים נוספים של התמונה שצריך לספק ב-opt_map. אפשר לגשת לפסים של כל תמונה כזו כמו image.band_name או image[0].
הפונקציות b() ו-image[] מאפשרות שימוש בכמה ארגומנטים, כדי לציין כמה רצועות, כמו b(1, 'name', 3). התקשרות אל b() ללא ארגומנטים, או שימוש במשתנה לבד, מחזירה את כל הפסים של התמונה.
אם התוצאה של ביטוי היא פס יחיד, אפשר להקצות לו שם באמצעות האופרטור '=' (לדוגמה: x = a + b).
הפונקציה מחזירה את התמונה שחושבה על ידי הביטוי שצוין.
שימוש | החזרות |
---|
Image.expression(expression, map) | תמונה |
ארגומנט | סוג | פרטים |
---|
זה: image | תמונה | מופע התמונה. |
expression | מחרוזת | הביטוי להערכה. |
map | Dictionary<Image>, אופציונלי | מפה של תמונות קלט שזמינות לפי שם. |
דוגמאות
עורך הקוד (JavaScript)
// The following expressions calculate the normalized difference vegetation
// index (NDVI): (NIR - Red) / (NIR + Red).
// NIR is Landsat 8 L2 band 'SR_B5', the 4th band index.
// Red is Landsat 8 L2 band 'SR_B4', the 3rd band index.
// A Landsat 8 L2 surface reflectance image.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');
// Visualization parameters for NDVI.
var ndviVis = {min: 0, max: 0.5};
// Expression using image band indices.
var bandIndexExp = '(b(4) - b(3)) / (b(4) + b(3))';
var bandIndexImg = img.expression(bandIndexExp).rename('NDVI');
Map.setCenter(-122.14, 37.38, 11);
Map.addLayer(bandIndexImg, ndviVis, 'NDVI 1');
// Expression using image band names.
var bandNameExp = '(b("SR_B5") - b("SR_B4")) / (b("SR_B5") + b("SR_B4"))';
var bandNameImg = img.expression(bandNameExp).rename('NDVI');
Map.addLayer(bandNameImg, ndviVis, 'NDVI 2');
// Expression using named variables.
var namedVarsExp = '(NIR - Red) / (NIR + Red)';
var namedVarsImg = ee.Image().expression({
expression: namedVarsExp,
map: {
NIR: img.select('SR_B5'),
Red: img.select('SR_B4')
}
}).rename('NDVI');
Map.addLayer(namedVarsImg, ndviVis, 'NDVI 3');
// Expression using named variables with image band access by dot notation.
var namedVarsDotExp = '(ls8.SR_B5 - ls8.SR_B4) / (ls8.SR_B5 + ls8.SR_B4)';
var namedVarsDotImg = ee.Image().expression({
expression: namedVarsDotExp,
map: {ls8: img}
}).rename('NDVI');
Map.addLayer(namedVarsDotImg, ndviVis, 'NDVI 4');
// Expressions can use arithmetic operators (+ - * / % **), relational
// operators (== != < > <= >=), logical operators (&& || ! ^), the ternary
// operator (condition ? ifTrue : ifFalse), and a subset of JavaScript Math
// functions. Math functions are called by name directly, they are not accessed
// from the Math object (e.g., sqrt() instead of Math.sqrt()).
var jsMathExp = 'c = sqrt(pow(a, 2) + pow(b, 2))';
var jsMathImg = ee.Image().expression({
expression: jsMathExp,
map: {
a: ee.Image(5),
b: img.select('SR_B2')
}
});
Map.addLayer(jsMathImg, {min: 5000, max: 20000}, 'Hypotenuse', false);
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# The following expressions calculate the normalized difference vegetation
# index (NDVI): (NIR - Red) / (NIR + Red).
# NIR is Landsat 8 L2 band 'SR_B5', the 4th band index.
# Red is Landsat 8 L2 band 'SR_B4', the 3rd band index.
# A Landsat 8 L2 surface reflectance image.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
# Visualization parameters for NDVI.
ndvi_vis = {'min': 0, 'max': 0.5}
# Expression using image band indices.
band_index_exp = '(b(4) - b(3)) / (b(4) + b(3))'
band_index_img = img.expression(band_index_exp).rename('NDVI')
m = geemap.Map()
m.set_center(-122.14, 37.38, 11)
m.add_layer(band_index_img, ndvi_vis, 'NDVI 1')
# Expression using image band names.
band_name_exp = '(b("SR_B5") - b("SR_B4")) / (b("SR_B5") + b("SR_B4"))'
band_name_img = img.expression(band_name_exp).rename('NDVI')
m.add_layer(band_name_img, ndvi_vis, 'NDVI 2')
# Expression using named variables.
named_vars_exp = '(NIR - Red) / (NIR + Red)'
named_vars_img = (
ee.Image()
.expression(
expression=named_vars_exp,
opt_map={'NIR': img.select('SR_B5'), 'Red': img.select('SR_B4')},
)
.rename('NDVI')
)
m.add_layer(named_vars_img, ndvi_vis, 'NDVI 3')
# Expression using named variables with image band access by dot notation.
named_vars_dot_exp = '(ls8.SR_B5 - ls8.SR_B4) / (ls8.SR_B5 + ls8.SR_B4)'
named_vars_dot_img = (
ee.Image()
.expression(expression=named_vars_dot_exp, opt_map={'ls8': img})
.rename('NDVI')
)
m.add_layer(named_vars_dot_img, ndvi_vis, 'NDVI 4')
# Expressions can use arithmetic operators (+ - * / % **), relational
# operators (== != < > <= >=), logical operators (&& || ! ^), the ternary
# operator (condition ? ifTrue : ifFalse), and a subset of JavaScript Math
# functions. Math functions are called by name directly, they are not accessed
# from the Math object (e.g., sqrt() instead of Math.sqrt()).
js_math_exp = 'c = sqrt(pow(a, 2) + pow(b, 2))'
js_math_img = ee.Image().expression(
expression=js_math_exp, opt_map={'a': ee.Image(5), 'b': img.select('SR_B2')}
)
m.add_layer(js_math_img, {'min': 5000, 'max': 20000}, 'Hypotenuse', False)
m
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[[["\u003cp\u003e\u003ccode\u003eImage.expression()\u003c/code\u003e allows you to perform arithmetic calculations on images using expressions.\u003c/p\u003e\n"],["\u003cp\u003eYou can access image bands within the expression using \u003ccode\u003eb()\u003c/code\u003e with band indices or names, or by defining variables representing images.\u003c/p\u003e\n"],["\u003cp\u003eExpressions can incorporate arithmetic, relational, logical, and ternary operators, along with select JavaScript Math functions.\u003c/p\u003e\n"],["\u003cp\u003eNamed variables representing images can be used in the expression, and accessed by their names or through dot notation if they represent images.\u003c/p\u003e\n"],["\u003cp\u003eThe expression's result is a new image which can be assigned a name using the '=' operator if it is single-banded.\u003c/p\u003e\n"]]],[],null,["# ee.Image.expression\n\n\u003cbr /\u003e\n\nEvaluates an arithmetic expression on an image, possibly involving additional images.\n\n\u003cbr /\u003e\n\nThe bands of the primary input image are available using the built-in function b(), as b(0) or b('band_name').\n\nVariables in the expression are interpreted as additional image parameters which must be supplied in opt_map. The bands of each such image can be accessed like image.band_name or image\\[0\\].\n\nBoth b() and image\\[\\] allow multiple arguments, to specify multiple bands, such as b(1, 'name', 3). Calling b() with no arguments, or using a variable by itself, returns all bands of the image.\n\nIf the result of an expression is a single band, it can be assigned a name using the '=' operator (e.g.: x = a + b).\n\nReturns the image computed by the provided expression.\n\n| Usage | Returns |\n|-----------------------------------------|---------|\n| Image.expression`(expression, `*map*`)` | Image |\n\n| Argument | Type | Details |\n|---------------|-------------------------------|------------------------------------------|\n| this: `image` | Image | The Image instance. |\n| `expression` | String | The expression to evaluate. |\n| `map` | Dictionary\\\u003cImage\\\u003e, optional | A map of input images available by name. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// The following expressions calculate the normalized difference vegetation\n// index (NDVI): (NIR - Red) / (NIR + Red).\n// NIR is Landsat 8 L2 band 'SR_B5', the 4th band index.\n// Red is Landsat 8 L2 band 'SR_B4', the 3rd band index.\n\n// A Landsat 8 L2 surface reflectance image.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');\n\n// Visualization parameters for NDVI.\nvar ndviVis = {min: 0, max: 0.5};\n\n// Expression using image band indices.\nvar bandIndexExp = '(b(4) - b(3)) / (b(4) + b(3))';\nvar bandIndexImg = img.expression(bandIndexExp).rename('NDVI');\nMap.setCenter(-122.14, 37.38, 11);\nMap.addLayer(bandIndexImg, ndviVis, 'NDVI 1');\n\n// Expression using image band names.\nvar bandNameExp = '(b(\"SR_B5\") - b(\"SR_B4\")) / (b(\"SR_B5\") + b(\"SR_B4\"))';\nvar bandNameImg = img.expression(bandNameExp).rename('NDVI');\nMap.addLayer(bandNameImg, ndviVis, 'NDVI 2');\n\n// Expression using named variables.\nvar namedVarsExp = '(NIR - Red) / (NIR + Red)';\nvar namedVarsImg = ee.Image().expression({\n expression: namedVarsExp,\n map: {\n NIR: img.select('SR_B5'),\n Red: img.select('SR_B4')\n }\n}).rename('NDVI');\nMap.addLayer(namedVarsImg, ndviVis, 'NDVI 3');\n\n// Expression using named variables with image band access by dot notation.\nvar namedVarsDotExp = '(ls8.SR_B5 - ls8.SR_B4) / (ls8.SR_B5 + ls8.SR_B4)';\nvar namedVarsDotImg = ee.Image().expression({\n expression: namedVarsDotExp,\n map: {ls8: img}\n}).rename('NDVI');\nMap.addLayer(namedVarsDotImg, ndviVis, 'NDVI 4');\n\n// Expressions can use arithmetic operators (+ - * / % **), relational\n// operators (== != \u003c \u003e \u003c= \u003e=), logical operators (&& || ! ^), the ternary\n// operator (condition ? ifTrue : ifFalse), and a subset of JavaScript Math\n// functions. Math functions are called by name directly, they are not accessed\n// from the Math object (e.g., sqrt() instead of Math.sqrt()).\nvar jsMathExp = 'c = sqrt(pow(a, 2) + pow(b, 2))';\nvar jsMathImg = ee.Image().expression({\n expression: jsMathExp,\n map: {\n a: ee.Image(5),\n b: img.select('SR_B2')\n }\n});\nMap.addLayer(jsMathImg, {min: 5000, max: 20000}, 'Hypotenuse', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# The following expressions calculate the normalized difference vegetation\n# index (NDVI): (NIR - Red) / (NIR + Red).\n# NIR is Landsat 8 L2 band 'SR_B5', the 4th band index.\n# Red is Landsat 8 L2 band 'SR_B4', the 3rd band index.\n\n# A Landsat 8 L2 surface reflectance image.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n\n# Visualization parameters for NDVI.\nndvi_vis = {'min': 0, 'max': 0.5}\n\n# Expression using image band indices.\nband_index_exp = '(b(4) - b(3)) / (b(4) + b(3))'\nband_index_img = img.expression(band_index_exp).rename('NDVI')\nm = geemap.Map()\nm.set_center(-122.14, 37.38, 11)\nm.add_layer(band_index_img, ndvi_vis, 'NDVI 1')\n\n# Expression using image band names.\nband_name_exp = '(b(\"SR_B5\") - b(\"SR_B4\")) / (b(\"SR_B5\") + b(\"SR_B4\"))'\nband_name_img = img.expression(band_name_exp).rename('NDVI')\nm.add_layer(band_name_img, ndvi_vis, 'NDVI 2')\n\n# Expression using named variables.\nnamed_vars_exp = '(NIR - Red) / (NIR + Red)'\nnamed_vars_img = (\n ee.Image()\n .expression(\n expression=named_vars_exp,\n opt_map={'NIR': img.select('SR_B5'), 'Red': img.select('SR_B4')},\n )\n .rename('NDVI')\n)\nm.add_layer(named_vars_img, ndvi_vis, 'NDVI 3')\n\n# Expression using named variables with image band access by dot notation.\nnamed_vars_dot_exp = '(ls8.SR_B5 - ls8.SR_B4) / (ls8.SR_B5 + ls8.SR_B4)'\nnamed_vars_dot_img = (\n ee.Image()\n .expression(expression=named_vars_dot_exp, opt_map={'ls8': img})\n .rename('NDVI')\n)\nm.add_layer(named_vars_dot_img, ndvi_vis, 'NDVI 4')\n\n# Expressions can use arithmetic operators (+ - * / % **), relational\n# operators (== != \u003c \u003e \u003c= \u003e=), logical operators (&& || ! ^), the ternary\n# operator (condition ? ifTrue : ifFalse), and a subset of JavaScript Math\n# functions. Math functions are called by name directly, they are not accessed\n# from the Math object (e.g., sqrt() instead of Math.sqrt()).\njs_math_exp = 'c = sqrt(pow(a, 2) + pow(b, 2))'\njs_math_img = ee.Image().expression(\n expression=js_math_exp, opt_map={'a': ee.Image(5), 'b': img.select('SR_B2')}\n)\nm.add_layer(js_math_img, {'min': 5000, 'max': 20000}, 'Hypotenuse', False)\nm\n```"]]