ee.Image.normalizedDifference
संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
दो बैंड के बीच के अंतर को सामान्य करता है. अगर इस्तेमाल किए जाने वाले बैंड तय नहीं किए गए हैं, तो पहले दो बैंड का इस्तेमाल किया जाता है. सामान्य अंतर की गणना इस तरह की जाती है: (पहला − दूसरा) / (पहला + दूसरा). ध्यान दें कि दिखाई गई इमेज बैंड का नाम 'nd' है. साथ ही, इनपुट इमेज की प्रॉपर्टी, आउटपुट इमेज में नहीं रखी जाती हैं. इसके अलावा, किसी भी इनपुट बैंड में नेगेटिव पिक्सल वैल्यू होने पर, आउटपुट पिक्सल को मास्क कर दिया जाएगा. नेगेटिव इनपुट वैल्यू को मास्क करने से बचने के लिए, सामान्य अंतर का हिसाब लगाने के लिए
ee.Image.expression()
का इस्तेमाल करें.
इस्तेमाल | रिटर्न |
---|
Image.normalizedDifference(bandNames) | इमेज |
आर्ग्यूमेंट | टाइप | विवरण |
---|
यह: input | इमेज | इनपुट इमेज. |
bandNames | सूची, डिफ़ॉल्ट: null | इस्तेमाल किए जाने वाले बैंड के बारे में बताने वाले नामों की सूची. अगर इसे सेट नहीं किया जाता है, तो पहले और दूसरे बैंड का इस्तेमाल किया जाता है. |
उदाहरण
कोड एडिटर (JavaScript)
// A Landsat 8 surface reflectance image.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');
// Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
var nirBand = 'SR_B5';
var redBand = 'SR_B4';
var ndvi = img.normalizedDifference([nirBand, redBand]);
// Display NDVI result on the map.
Map.setCenter(-122.148, 37.377, 11);
Map.addLayer(ndvi, {min: 0, max: 0.5}, 'NDVI');
Python सेटअप करना
Python API और इंटरैक्टिव डेवलपमेंट के लिए geemap
का इस्तेमाल करने के बारे में जानकारी पाने के लिए,
Python एनवायरमेंट पेज देखें.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
# Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
nir_band = 'SR_B5'
red_band = 'SR_B4'
ndvi = img.normalizedDifference([nir_band, red_band])
# Display NDVI result on the map.
m = geemap.Map()
m.set_center(-122.148, 37.377, 11)
m.add_layer(ndvi, {'min': 0, 'max': 0.5}, 'NDVI')
m
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[[["\u003cp\u003eComputes the normalized difference between two specified or default image bands using the formula (first - second) / (first + second).\u003c/p\u003e\n"],["\u003cp\u003eReturns a single-band image named 'nd' representing the normalized difference.\u003c/p\u003e\n"],["\u003cp\u003eInput image properties are not preserved in the output, and negative input values in either band result in masked output pixels.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eee.Image.expression()\u003c/code\u003e is recommended for handling negative input values and avoiding masking.\u003c/p\u003e\n"]]],[],null,["# ee.Image.normalizedDifference\n\nComputes the normalized difference between two bands. If the bands to use are not specified, uses the first two bands. The normalized difference is computed as (first − second) / (first + second). Note that the returned image band name is 'nd', the input image properties are not retained in the output image, and a negative pixel value in either input band will cause the output pixel to be masked. To avoid masking negative input values, use `ee.Image.expression()` to compute normalized difference.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------|---------|\n| Image.normalizedDifference`(`*bandNames*`)` | Image |\n\n| Argument | Type | Details |\n|---------------|---------------------|-----------------------------------------------------------------------------------------------------|\n| this: `input` | Image | The input image. |\n| `bandNames` | List, default: null | A list of names specifying the bands to use. If not specified, the first and second bands are used. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');\n\n// Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).\nvar nirBand = 'SR_B5';\nvar redBand = 'SR_B4';\nvar ndvi = img.normalizedDifference([nirBand, redBand]);\n\n// Display NDVI result on the map.\nMap.setCenter(-122.148, 37.377, 11);\nMap.addLayer(ndvi, {min: 0, max: 0.5}, 'NDVI');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n\n# Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).\nnir_band = 'SR_B5'\nred_band = 'SR_B4'\nndvi = img.normalizedDifference([nir_band, red_band])\n\n# Display NDVI result on the map.\nm = geemap.Map()\nm.set_center(-122.148, 37.377, 11)\nm.add_layer(ndvi, {'min': 0, 'max': 0.5}, 'NDVI')\nm\n```"]]