Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso. Se você não fizer a verificação até 26 de setembro de 2025, seu acesso poderá ser suspenso.
ee.Image.normalizedDifference
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Calcula a diferença normalizada entre duas bandas. Se as bandas a serem usadas não forem especificadas, as duas primeiras serão usadas. A diferença normalizada é calculada como (primeiro − segundo) / (primeiro + segundo). O nome da banda de imagem retornada é "nd". As propriedades da imagem de entrada não são mantidas na imagem de saída, e um valor de pixel negativo em qualquer banda de entrada faz com que o pixel de saída seja mascarado. Para evitar mascarar valores de entrada negativos, use
ee.Image.expression()
para calcular a diferença normalizada.
Uso | Retorna |
---|
Image.normalizedDifference(bandNames) | Imagem |
Argumento | Tipo | Detalhes |
---|
isso: input | Imagem | A imagem de entrada. |
bandNames | Lista, padrão: nulo | Uma lista de nomes que especificam as bandas a serem usadas. Se não for especificado, as bandas 1 e 2 serão usadas. |
Exemplos
Editor de código (JavaScript)
// A Landsat 8 surface reflectance image.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');
// Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
var nirBand = 'SR_B5';
var redBand = 'SR_B4';
var ndvi = img.normalizedDifference([nirBand, redBand]);
// Display NDVI result on the map.
Map.setCenter(-122.148, 37.377, 11);
Map.addLayer(ndvi, {min: 0, max: 0.5}, 'NDVI');
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e como usar
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
# Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
nir_band = 'SR_B5'
red_band = 'SR_B4'
ndvi = img.normalizedDifference([nir_band, red_band])
# Display NDVI result on the map.
m = geemap.Map()
m.set_center(-122.148, 37.377, 11)
m.add_layer(ndvi, {'min': 0, 'max': 0.5}, 'NDVI')
m
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[],[]]