Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
ee.Image.reduceRegion
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Aplique um redutor a todos os pixels em uma região específica.
O redutor precisa ter o mesmo número de entradas que a imagem de entrada tem bandas ou ter uma única entrada e ser repetido para cada banda.
Retorna um dicionário das saídas do redutor.
Uso | Retorna |
---|
Image.reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) | Dicionário |
Argumento | Tipo | Detalhes |
---|
isso: image | Imagem | A imagem a ser reduzida. |
reducer | Redutor | O redutor a ser aplicado. |
geometry | Geometria, padrão: nulo | A região em que os dados serão reduzidos. O padrão é a área da primeira banda da imagem. |
scale | Ponto flutuante, padrão: nulo | Uma escala nominal em metros da projeção em que trabalhar. |
crs | Projeção, padrão: nulo | A projeção em que trabalhar. Se não for especificada, será usada a projeção da primeira banda da imagem. Se especificado além da escala, será redimensionado para a escala especificada. |
crsTransform | Lista, padrão: nulo | A lista de valores de transformação de CRS. Essa é uma ordenação de linha principal da matriz de transformação 3x2. Essa opção é mutuamente exclusiva com "scale" e substitui qualquer transformação já definida na projeção. |
bestEffort | Booleano, padrão: falso | Se o polígono contiver muitos pixels na escala especificada, calcule e use uma escala maior para que a operação seja concluída. |
maxPixels | Long, padrão: 10000000 | O número máximo de pixels a serem reduzidos. |
tileScale | Ponto flutuante, padrão: 1 | Um fator de escalonamento entre 0,1 e 16 usado para ajustar o tamanho do bloco de agregação. Definir um tileScale maior (por exemplo, 2 ou 4) usa blocos menores e pode ativar cálculos que ficam sem memória com o padrão. |
Exemplos
Editor de código (JavaScript)
// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B6', 'SR_B5', 'SR_B3']);
// Santa Cruz Mountains ecoregion geometry.
var geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"').geometry();
// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');
// Calculate median band values within Santa Cruz Mountains ecoregion. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegion({
reducer: ee.Reducer.median(),
geometry: geom,
scale: 30, // meters
crs: 'EPSG:3310', // California Albers projection
});
// A dictionary is returned; keys are band names, values are the statistic.
print('Median band values, Santa Cruz Mountains ecoregion', stats);
// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The output dictionary keys are the concatenation of the band
// names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
reducer2: ee.Reducer.stdDev(),
sharedInputs: true
});
var multiStats = img.reduceRegion({
reducer: reducer,
geometry: geom,
scale: 30,
crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e como usar
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
['SR_B6', 'SR_B5', 'SR_B3']
)
# Santa Cruz Mountains ecoregion geometry.
geom = (
ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"')
.geometry()
)
# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')
display(m)
# Calculate median band values within Santa Cruz Mountains ecoregion. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegion(
reducer=ee.Reducer.median(),
geometry=geom,
scale=30, # meters
crs='EPSG:3310', # California Albers projection
)
# A dictionary is returned keys are band names, values are the statistic.
display('Median band values, Santa Cruz Mountains ecoregion', stats)
# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The output dictionary keys are the concatenation of the band
# names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegion(
reducer=reducer,
geometry=geom,
scale=30,
crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eImage.reduceRegion()\u003c/code\u003e applies a reducer function to all pixels within a specified region of an image.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer can either accept the same number of inputs as the image bands or a single input to be applied to each band.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a dictionary containing the reducer's output, with keys representing band names and values corresponding to the calculated statistic.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define parameters like scale, projection, and geometry to control the region and resolution of the reduction operation.\u003c/p\u003e\n"],["\u003cp\u003eMultiple reducers can be combined to calculate multiple statistics simultaneously, with output dictionary keys reflecting both band and statistic names.\u003c/p\u003e\n"]]],[],null,["# ee.Image.reduceRegion\n\nApply a reducer to all the pixels in a specific region.\n\n\u003cbr /\u003e\n\nEither the reducer must have the same number of inputs as the input image has bands, or it must have a single input and will be repeated for each band.\n\nReturns a dictionary of the reducer's outputs.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------------------------------------------------------|------------|\n| Image.reduceRegion`(reducer, `*geometry* `, `*scale* `, `*crs* `, `*crsTransform* `, `*bestEffort* `, `*maxPixels* `, `*tileScale*`)` | Dictionary |\n\n| Argument | Type | Details |\n|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to reduce. |\n| `reducer` | Reducer | The reducer to apply. |\n| `geometry` | Geometry, default: null | The region over which to reduce data. Defaults to the footprint of the image's first band. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, default: null | The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection. |\n| `bestEffort` | Boolean, default: false | If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. |\n| `maxPixels` | Long, default: 10000000 | The maximum number of pixels to reduce. |\n| `tileScale` | Float, default: 1 | A scaling factor between 0.1 and 16 used to adjust aggregation tile size; setting a larger tileScale (e.g., 2 or 4) uses smaller tiles and may enable computations that run out of memory with the default. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n .select(['SR_B6', 'SR_B5', 'SR_B3']);\n\n// Santa Cruz Mountains ecoregion geometry.\nvar geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"').geometry();\n\n// Display layers on the map.\nMap.setCenter(-122.08, 37.22, 9);\nMap.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');\nMap.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');\n\n// Calculate median band values within Santa Cruz Mountains ecoregion. It is\n// good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n// parameters of the analysis to avoid unexpected results from undesired\n// defaults when e.g. reducing a composite image.\nvar stats = img.reduceRegion({\n reducer: ee.Reducer.median(),\n geometry: geom,\n scale: 30, // meters\n crs: 'EPSG:3310', // California Albers projection\n});\n\n// A dictionary is returned; keys are band names, values are the statistic.\nprint('Median band values, Santa Cruz Mountains ecoregion', stats);\n\n// You can combine reducers to calculate e.g. mean and standard deviation\n// simultaneously. The output dictionary keys are the concatenation of the band\n// names and statistic names, separated by an underscore.\nvar reducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true\n});\nvar multiStats = img.reduceRegion({\n reducer: reducer,\n geometry: geom,\n scale: 30,\n crs: 'EPSG:3310',\n});\nprint('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(\n ['SR_B6', 'SR_B5', 'SR_B3']\n)\n\n# Santa Cruz Mountains ecoregion geometry.\ngeom = (\n ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"')\n .geometry()\n)\n\n# Display layers on the map.\nm = geemap.Map()\nm.set_center(-122.08, 37.22, 9)\nm.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')\nm.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')\ndisplay(m)\n\n# Calculate median band values within Santa Cruz Mountains ecoregion. It is\n# good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n# parameters of the analysis to avoid unexpected results from undesired\n# defaults when e.g. reducing a composite image.\nstats = img.reduceRegion(\n reducer=ee.Reducer.median(),\n geometry=geom,\n scale=30, # meters\n crs='EPSG:3310', # California Albers projection\n)\n\n# A dictionary is returned keys are band names, values are the statistic.\ndisplay('Median band values, Santa Cruz Mountains ecoregion', stats)\n\n# You can combine reducers to calculate e.g. mean and standard deviation\n# simultaneously. The output dictionary keys are the concatenation of the band\n# names and statistic names, separated by an underscore.\nreducer = ee.Reducer.mean().combine(\n reducer2=ee.Reducer.stdDev(), sharedInputs=True\n)\nmulti_stats = img.reduceRegion(\n reducer=reducer,\n geometry=geom,\n scale=30,\n crs='EPSG:3310',\n)\ndisplay('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)\n```"]]