Earth Engine은 공유 컴퓨팅 리소스를 보호하고 모든 사용자에게 안정적인 성능을 보장하기 위해
비상업적 할당량 등급을 도입합니다. 모든 비상업용 프로젝트는
2026년 4월 27일까지 할당량 등급을 선택해야 하며, 선택하지 않으면 커뮤니티 등급이 기본적으로 사용됩니다. 등급 할당량은 등급 선택 날짜와 관계없이
2026년 4월 27일에 모든 프로젝트에 적용됩니다.
자세히 알아보기
ee.Image.sample
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
이미지의 픽셀을 샘플링하여 FeatureCollection으로 반환합니다. 각 특징에는 입력 이미지의 밴드당 속성이 하나씩 있습니다. 기본 동작은 마스크 처리된 픽셀과 교차하는 기능을 삭제하여 null 값 속성이 생성되는 것입니다 (dropNulls 인수 참고).
| 사용 | 반환 값 |
|---|
Image.sample(region, scale, projection, factor, numPixels, seed, dropNulls, tileScale, geometries) | FeatureCollection |
| 인수 | 유형 | 세부정보 |
|---|
다음과 같은 경우: image | 이미지 | 샘플링할 이미지입니다. |
region | 기하학, 기본값: null | 샘플링할 리전입니다. 지정하지 않으면 이미지의 전체 설치 공간을 사용합니다. |
scale | 부동 소수점 수, 기본값: null | 샘플링할 투영의 명목상 스케일(미터)입니다. |
projection | 예상, 기본값: null | 샘플링할 투영입니다. 지정하지 않으면 이미지의 첫 번째 밴드의 투영이 사용됩니다. 크기 조정 외에 지정된 경우 지정된 크기로 다시 조정됩니다. |
factor | 부동 소수점 수, 기본값: null | (0, 1] 범위의 다운샘플링 요소입니다. 지정된 경우 'numPixels'를 지정하면 안 됩니다. 기본값은 서브샘플링 없음입니다. |
numPixels | long, 기본값: null | 샘플링할 대략적인 픽셀 수입니다. 지정된 경우 'factor'는 지정하면 안 됩니다. |
seed | 정수, 기본값: 0 | 하위 샘플링에 사용할 무작위 순서 지정 시드입니다. |
dropNulls | 불리언, 기본값: true | 결과를 필터링하여 null 값 속성이 있는 기능을 삭제합니다. |
tileScale | 부동 소수점 수, 기본값: 1 | 집계 타일 크기를 줄이는 데 사용되는 확장 요소입니다. 더 큰 tileScale (예: 2 또는 4)를 사용하면 기본값으로 메모리가 부족한 계산을 실행할 수 있습니다. |
geometries | 불리언, 기본값: false | true인 경우 샘플링된 픽셀의 중심을 출력 피처의 geometry 속성으로 추가합니다. 그렇지 않으면 지오메트리가 생략되어 메모리가 절약됩니다. |
예
코드 편집기 (JavaScript)
// Demonstrate extracting pixels from an image as features with
// ee.Image.sample(), and show how the features are aligned with the pixels.
// An image with one band of elevation data.
var image = ee.Image('CGIAR/SRTM90_V4');
var VIS_MIN = 1620;
var VIS_MAX = 1650;
Map.addLayer(image, {min: VIS_MIN, max: VIS_MAX}, 'SRTM');
// Region to sample.
var region = ee.Geometry.Polygon(
[[[-110.006, 40.002],
[-110.006, 39.999],
[-109.995, 39.999],
[-109.995, 40.002]]], null, false);
// Show region on the map.
Map.setCenter(-110, 40, 16);
Map.addLayer(ee.FeatureCollection([region]).style({"color": "00FF0022"}));
// Perform sampling; convert image pixels to features.
var samples = image.sample({
region: region,
// Default (false) is no geometries in the output.
// When set to true, each feature has a Point geometry at the center of the
// image pixel.
geometries: true,
// The scale is not specified, so the resolution of the image will be used,
// and there is a feature for every pixel. If we give a scale parameter, the
// image will be resampled and there will be more or fewer features.
//
// scale: 200,
});
// Visualize sample data using ee.FeatureCollection.style().
var styled = samples
.map(function (feature) {
return feature.set('style', {
pointSize: feature.getNumber('elevation').unitScale(VIS_MIN, VIS_MAX)
.multiply(15),
});
})
.style({
color: '000000FF',
fillColor: '00000000',
styleProperty: 'style',
neighborhood: 6, // increase to correctly draw large points
});
Map.addLayer(styled);
// Each sample feature has a point geometry and a property named 'elevation'
// corresponding to the band named 'elevation' of the image. If there are
// multiple bands they will become multiple properties. This will print:
//
// geometry: Point (-110.01, 40.00)
// properties:
// elevation: 1639
print(samples.first());
Python 설정
Python API 및 geemap를 사용한 대화형 개발에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# Demonstrate extracting pixels from an image as features with
# ee.Image.sample(), and show how the features are aligned with the pixels.
# An image with one band of elevation data.
image = ee.Image('CGIAR/SRTM90_V4')
vis_min = 1620
vis_max = 1650
m = geemap.Map()
m.add_layer(image, {'min': vis_min, 'max': vis_max}, 'SRTM')
# Region to sample.
region = ee.Geometry.Polygon(
[[
[-110.006, 40.002],
[-110.006, 39.999],
[-109.995, 39.999],
[-109.995, 40.002],
]],
None,
False,
)
# Show region on the map.
m.set_center(-110, 40, 16)
m.add_layer(ee.FeatureCollection([region]).style(color='00FF0022'))
# Perform sampling convert image pixels to features.
samples = image.sample(
region=region,
# Default (False) is no geometries in the output.
# When set to True, each feature has a Point geometry at the center of the
# image pixel.
geometries=True,
# The scale is not specified, so the resolution of the image will be used,
# and there is a feature for every pixel. If we give a scale parameter, the
# image will be resampled and there will be more or fewer features.
#
# scale=200,
)
def scale_point_size(feature):
elevation = feature.getNumber('elevation')
point_size = elevation.unitScale(vis_min, vis_max).multiply(15)
feature.set('style', {'pointSize': point_size})
return feature
# Visualize sample data using ee.FeatureCollection.style().
styled = samples.map(scale_point_size).style(
color='000000FF',
fillColor='00000000',
styleProperty='style',
neighborhood=6, # increase to correctly draw large points
)
m.add_layer(styled)
display(m)
# Each sample feature has a point geometry and a property named 'elevation'
# corresponding to the band named 'elevation' of the image. If there are
# multiple bands they will become multiple properties. This will print:
#
# geometry: Point (-110.01, 40.00)
# properties:
# elevation: 1639
display(samples.first())
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[]]