Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
ee.Image.sampleRegions
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Converte cada pixel de uma imagem (em uma determinada escala) que cruza uma ou mais regiões em um recurso, retornando-os como um FeatureCollection. Cada recurso de saída terá uma propriedade por banda da imagem de entrada, além de todas as propriedades especificadas copiadas do recurso de entrada.
As geometrias serão ajustadas aos centros dos pixels.
Uso | Retorna |
---|
Image.sampleRegions(collection, properties, scale, projection, tileScale, geometries) | FeatureCollection |
Argumento | Tipo | Detalhes |
---|
isso: image | Imagem | A imagem a ser amostrada. |
collection | FeatureCollection | As regiões para amostragem. |
properties | Lista, padrão: nulo | A lista de propriedades a serem copiadas de cada recurso de entrada. O padrão é todas as propriedades que não são do sistema. |
scale | Ponto flutuante, padrão: nulo | Uma escala nominal em metros da projeção para amostragem. Se não for especificado, a escala da primeira banda da imagem será usada. |
projection | Projeção, padrão: nulo | A projeção em que a amostragem será feita. Se não for especificada, será usada a projeção da primeira banda da imagem. Se especificado além da escala, será redimensionado para a escala especificada. |
tileScale | Ponto flutuante, padrão: 1 | Um fator de escalonamento usado para reduzir o tamanho do bloco de agregação. Usar um tileScale maior (por exemplo, 2 ou 4) podem ativar cálculos que ficam sem memória com o padrão. |
geometries | Booleano, padrão: falso | Se for "true", os resultados vão incluir uma geometria de ponto por pixel amostrado. Caso contrário, as geometrias serão omitidas (economizando memória). |
Exemplos
Editor de código (JavaScript)
// A Sentinel-2 surface reflectance image.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
Map.setCenter(-122.503881, 37.765588, 18);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 4500}, 'img');
// A feature collection with two polygon regions each intersecting 36
// pixels at 10 m scale.
var fcPolygon = ee.FeatureCollection([
ee.Feature(ee.Geometry.Rectangle(
-122.50620929, 37.76502806, -122.50552264, 37.76556663), {id: 0}),
ee.Feature(ee.Geometry.Rectangle(
-122.50530270, 37.76565568, -122.50460533, 37.76619425), {id: 1})
]);
Map.addLayer(fcPolygon, {color: 'yellow'}, 'fcPolygon');
var fcPolygonSamp = img.sampleRegions({
collection: fcPolygon,
scale: 10,
geometries: true
});
// Note that 7 pixels are missing from the sample. If a pixel contains a masked
// band value it will be excluded from the sample. In this case, the TCI_B band
// is masked for each unsampled pixel.
print('A feature per pixel (at given scale) in each region', fcPolygonSamp);
Map.addLayer(fcPolygonSamp, {color: 'purple'}, 'fcPolygonSamp');
// A feature collection with two points intersecting two different pixels.
// This example is included to show the behavior for point geometries. In
// practice, if the feature collection is all points, ee.Image.reduceRegions
// should be used instead to save memory.
var fcPoint = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {id: 0}),
ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {id: 1})
]);
Map.addLayer(fcPoint, {color: 'cyan'}, 'fcPoint');
var fcPointSamp = img.sampleRegions({
collection: fcPoint,
scale: 10
});
print('A feature per point', fcPointSamp);
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e como usar
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image.
img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
m = geemap.Map()
m.set_center(-122.503881, 37.765588, 18)
m.add_layer(
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 4500}, 'img'
)
display(m)
# A feature collection with two polygon regions each intersecting 36
# pixels at 10 m scale.
fc_polygon = ee.FeatureCollection([
ee.Feature(
ee.Geometry.Rectangle(
-122.50620929, 37.76502806, -122.50552264, 37.76556663
),
{'id': 0},
),
ee.Feature(
ee.Geometry.Rectangle(
-122.50530270, 37.76565568, -122.50460533, 37.76619425
),
{'id': 1},
),
])
m.add_layer(fc_polygon, {'color': 'yellow'}, 'fc_polygon')
fc_polygon_samp = img.sampleRegions(
collection=fc_polygon, scale=10, geometries=True
)
# Note that 7 pixels are missing from the sample. If a pixel contains a masked
# band value it will be excluded from the sample. In this case, the TCI_B band
# is masked for each unsampled pixel.
display('A feature per pixel (at given scale) in each region', fc_polygon_samp)
m.add_layer(fc_polygon_samp, {'color': 'purple'}, 'fc_polygon_samp')
# A feature collection with two points intersecting two different pixels.
# This example is included to show the behavior for point geometries. In
# practice, if the feature collection is all points, ee.Image.reduceRegions
# should be used instead to save memory.
fc_point = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {'id': 0}),
ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {'id': 1}),
])
m.add_layer(fc_point, {'color': 'cyan'}, 'fc_point')
fc_point_samp = img.sampleRegions(collection=fc_point, scale=10)
display('A feature per point', fc_point_samp)
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eImage.sampleRegions\u003c/code\u003e extracts pixel values from an image within specified regions, returning them as a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eEach output feature contains the band values of the input image for each sampled pixel, along with properties from the input features.\u003c/p\u003e\n"],["\u003cp\u003eGeometries are snapped to pixel centers, and you can control the sampling scale and projection.\u003c/p\u003e\n"],["\u003cp\u003eThe function provides options to include point geometries and adjust the tile scale for memory management.\u003c/p\u003e\n"],["\u003cp\u003eIf the input is a FeatureCollection of points, \u003ccode\u003eee.Image.reduceRegions\u003c/code\u003e is generally recommended for better memory efficiency.\u003c/p\u003e\n"]]],["The `Image.sampleRegions` method converts image pixels intersecting specified regions into a `FeatureCollection`. Each output feature contains properties from the input image bands and any designated input feature properties. Geometries are snapped to pixel centers. The sampling scale and projection can be specified; otherwise, the image's first band defaults are used. Optionally, geometries of the sampled pixels can be included, and tile scaling can be used for memory management.\n"],null,["# ee.Image.sampleRegions\n\nConverts each pixel of an image (at a given scale) that intersects one or more regions to a Feature, returning them as a FeatureCollection. Each output feature will have one property per band of the input image, as well as any specified properties copied from the input feature.\n\n\u003cbr /\u003e\n\nNote that geometries will be snapped to pixel centers.\n\n| Usage | Returns |\n|-----------------------------------------------------------------------------------------------------------------|-------------------|\n| Image.sampleRegions`(collection, `*properties* `, `*scale* `, `*projection* `, `*tileScale* `, `*geometries*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to sample. |\n| `collection` | FeatureCollection | The regions to sample over. |\n| `properties` | List, default: null | The list of properties to copy from each input feature. Defaults to all non-system properties. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to sample in. If unspecified, the scale of the image's first band is used. |\n| `projection` | Projection, default: null | The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `tileScale` | Float, default: 1 | A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g., 2 or 4) may enable computations that run out of memory with the default. |\n| `geometries` | Boolean, default: false | If true, the results will include a point geometry per sampled pixel. Otherwise, geometries will be omitted (saving memory). |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Sentinel-2 surface reflectance image.\nvar img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\nMap.setCenter(-122.503881, 37.765588, 18);\nMap.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 4500}, 'img');\n\n// A feature collection with two polygon regions each intersecting 36\n// pixels at 10 m scale.\nvar fcPolygon = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Rectangle(\n -122.50620929, 37.76502806, -122.50552264, 37.76556663), {id: 0}),\n ee.Feature(ee.Geometry.Rectangle(\n -122.50530270, 37.76565568, -122.50460533, 37.76619425), {id: 1})\n]);\nMap.addLayer(fcPolygon, {color: 'yellow'}, 'fcPolygon');\n\nvar fcPolygonSamp = img.sampleRegions({\n collection: fcPolygon,\n scale: 10,\n geometries: true\n});\n// Note that 7 pixels are missing from the sample. If a pixel contains a masked\n// band value it will be excluded from the sample. In this case, the TCI_B band\n// is masked for each unsampled pixel.\nprint('A feature per pixel (at given scale) in each region', fcPolygonSamp);\nMap.addLayer(fcPolygonSamp, {color: 'purple'}, 'fcPolygonSamp');\n\n// A feature collection with two points intersecting two different pixels.\n// This example is included to show the behavior for point geometries. In\n// practice, if the feature collection is all points, ee.Image.reduceRegions\n// should be used instead to save memory.\nvar fcPoint = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {id: 0}),\n ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {id: 1})\n]);\nMap.addLayer(fcPoint, {color: 'cyan'}, 'fcPoint');\n\nvar fcPointSamp = img.sampleRegions({\n collection: fcPoint,\n scale: 10\n});\nprint('A feature per point', fcPointSamp);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Sentinel-2 surface reflectance image.\nimg = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\nm = geemap.Map()\nm.set_center(-122.503881, 37.765588, 18)\nm.add_layer(\n img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 4500}, 'img'\n)\ndisplay(m)\n\n# A feature collection with two polygon regions each intersecting 36\n# pixels at 10 m scale.\nfc_polygon = ee.FeatureCollection([\n ee.Feature(\n ee.Geometry.Rectangle(\n -122.50620929, 37.76502806, -122.50552264, 37.76556663\n ),\n {'id': 0},\n ),\n ee.Feature(\n ee.Geometry.Rectangle(\n -122.50530270, 37.76565568, -122.50460533, 37.76619425\n ),\n {'id': 1},\n ),\n])\nm.add_layer(fc_polygon, {'color': 'yellow'}, 'fc_polygon')\n\nfc_polygon_samp = img.sampleRegions(\n collection=fc_polygon, scale=10, geometries=True\n)\n# Note that 7 pixels are missing from the sample. If a pixel contains a masked\n# band value it will be excluded from the sample. In this case, the TCI_B band\n# is masked for each unsampled pixel.\ndisplay('A feature per pixel (at given scale) in each region', fc_polygon_samp)\nm.add_layer(fc_polygon_samp, {'color': 'purple'}, 'fc_polygon_samp')\n\n# A feature collection with two points intersecting two different pixels.\n# This example is included to show the behavior for point geometries. In\n# practice, if the feature collection is all points, ee.Image.reduceRegions\n# should be used instead to save memory.\nfc_point = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {'id': 0}),\n ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {'id': 1}),\n])\nm.add_layer(fc_point, {'color': 'cyan'}, 'fc_point')\n\nfc_point_samp = img.sampleRegions(collection=fc_point, scale=10)\ndisplay('A feature per point', fc_point_samp)\n```"]]