公告:所有在 
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.Image.sampleRegions
    
    
      
    
    
      
      使用集合让一切井井有条
    
    
      
      根据您的偏好保存内容并对其进行分类。
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
将与一个或多个区域相交的图片(按给定比例)的每个像素转换为要素,并以 FeatureCollection 的形式返回这些要素。每个输出要素都将具有输入图片的每个波段对应的属性,以及从输入要素复制的任何指定属性。
请注意,几何图形将贴靠到像素中心。
| 用法 | 返回 | 
|---|
| Image.sampleRegions(collection, properties, scale, projection, tileScale, geometries) | FeatureCollection | 
| 参数 | 类型 | 详细信息 | 
|---|
| 此: image | 图片 | 要抽样的图片。 | 
| collection | FeatureCollection | 要进行抽样的区域。 | 
| properties | 列表,默认值:null | 要从每个输入特征复制的属性列表。默认为所有非系统属性。 | 
| scale | 浮点数,默认值:null | 要采样的投影的标称比例(以米为单位)。如果未指定,则使用映像第一个波段的缩放比例。 | 
| projection | 投影,默认值:null | 要进行抽样的投影。如果未指定,则使用映像第一个波段的投影。如果除了缩放比例之外还指定了此参数,则会重新缩放到指定的缩放比例。 | 
| tileScale | 浮点数,默认值:1 | 用于减小聚合图块大小的缩放比例;使用较大的 tileScale(例如,2 或 4)可能会启用内存不足的计算(使用默认值)。 | 
| geometries | 布尔值,默认值:false | 如果为 true,则结果将包含每个抽样像素的点几何图形。否则,系统会省略几何图形(节省内存)。 | 
  
  
  示例
  
    
  
  
    
    
  
  
  
  
    
    
    
      代码编辑器 (JavaScript)
    
    
  // A Sentinel-2 surface reflectance image.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
Map.setCenter(-122.503881, 37.765588, 18);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 4500}, 'img');
// A feature collection with two polygon regions each intersecting 36
// pixels at 10 m scale.
var fcPolygon = ee.FeatureCollection([
  ee.Feature(ee.Geometry.Rectangle(
    -122.50620929, 37.76502806, -122.50552264, 37.76556663), {id: 0}),
  ee.Feature(ee.Geometry.Rectangle(
    -122.50530270, 37.76565568, -122.50460533, 37.76619425), {id: 1})
]);
Map.addLayer(fcPolygon, {color: 'yellow'}, 'fcPolygon');
var fcPolygonSamp = img.sampleRegions({
  collection: fcPolygon,
  scale: 10,
  geometries: true
});
// Note that 7 pixels are missing from the sample. If a pixel contains a masked
// band value it will be excluded from the sample. In this case, the TCI_B band
// is masked for each unsampled pixel.
print('A feature per pixel (at given scale) in each region', fcPolygonSamp);
Map.addLayer(fcPolygonSamp, {color: 'purple'}, 'fcPolygonSamp');
// A feature collection with two points intersecting two different pixels.
// This example is included to show the behavior for point geometries. In
// practice, if the feature collection is all points, ee.Image.reduceRegions
// should be used instead to save memory.
var fcPoint = ee.FeatureCollection([
  ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {id: 0}),
  ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {id: 1})
]);
Map.addLayer(fcPoint, {color: 'cyan'}, 'fcPoint');
var fcPointSamp = img.sampleRegions({
  collection: fcPoint,
  scale: 10
});
print('A feature per point', fcPointSamp);
  
    
  
  
    
  
  
  
  
    
  
    
  Python 设置
  如需了解 Python API 和如何使用 geemap 进行交互式开发,请参阅 
    Python 环境页面。
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # A Sentinel-2 surface reflectance image.
img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
m = geemap.Map()
m.set_center(-122.503881, 37.765588, 18)
m.add_layer(
    img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 4500}, 'img'
)
display(m)
# A feature collection with two polygon regions each intersecting 36
# pixels at 10 m scale.
fc_polygon = ee.FeatureCollection([
    ee.Feature(
        ee.Geometry.Rectangle(
            -122.50620929, 37.76502806, -122.50552264, 37.76556663
        ),
        {'id': 0},
    ),
    ee.Feature(
        ee.Geometry.Rectangle(
            -122.50530270, 37.76565568, -122.50460533, 37.76619425
        ),
        {'id': 1},
    ),
])
m.add_layer(fc_polygon, {'color': 'yellow'}, 'fc_polygon')
fc_polygon_samp = img.sampleRegions(
    collection=fc_polygon, scale=10, geometries=True
)
# Note that 7 pixels are missing from the sample. If a pixel contains a masked
# band value it will be excluded from the sample. In this case, the TCI_B band
# is masked for each unsampled pixel.
display('A feature per pixel (at given scale) in each region', fc_polygon_samp)
m.add_layer(fc_polygon_samp, {'color': 'purple'}, 'fc_polygon_samp')
# A feature collection with two points intersecting two different pixels.
# This example is included to show the behavior for point geometries. In
# practice, if the feature collection is all points, ee.Image.reduceRegions
# should be used instead to save memory.
fc_point = ee.FeatureCollection([
    ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {'id': 0}),
    ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {'id': 1}),
])
m.add_layer(fc_point, {'color': 'cyan'}, 'fc_point')
fc_point_samp = img.sampleRegions(collection=fc_point, scale=10)
display('A feature per point', fc_point_samp)
  
  
  
  
  
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
  最后更新时间 (UTC):2025-07-26。
  
  
  
    
      [null,null,["最后更新时间 (UTC):2025-07-26。"],[],["The `Image.sampleRegions` method converts image pixels intersecting specified regions into a `FeatureCollection`. Each output feature contains properties from the input image bands and any designated input feature properties. Geometries are snapped to pixel centers. The sampling scale and projection can be specified; otherwise, the image's first band defaults are used. Optionally, geometries of the sampled pixels can be included, and tile scaling can be used for memory management.\n"]]