Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.ImageCollection.aggregate_stats
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Aggrega una determinata proprietà degli oggetti in una raccolta, calcolando la somma, il minimo, il massimo, la media, la deviazione standard del campione, la varianza del campione, la deviazione standard totale e la varianza totale della proprietà selezionata.
Utilizzo | Resi |
---|
ImageCollection.aggregate_stats(property) | Dizionario |
Argomento | Tipo | Dettagli |
---|
questo: collection | FeatureCollection | La raccolta su cui eseguire l'aggregazione. |
property | Stringa | La proprietà da utilizzare per ogni elemento della raccolta. |
Esempi
Editor di codice (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterBounds(ee.Geometry.Point([-122.073, 37.188]))
.filterDate('2018', '2019');
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER';
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print('List of property values', col.aggregate_array(prop));
print('Count of property values', col.aggregate_count(prop));
print('Count of distinct property values', col.aggregate_count_distinct(prop));
print('First collection element property value', col.aggregate_first(prop));
print('Histogram of property values', col.aggregate_histogram(prop));
print('Min of property values', col.aggregate_min(prop));
print('Max of property values', col.aggregate_max(prop));
// The following methods are applicable to numerical properties only.
print('Mean of property values', col.aggregate_mean(prop));
print('Sum of property values', col.aggregate_sum(prop));
print('Product of property values', col.aggregate_product(prop));
print('Std dev (sample) of property values', col.aggregate_sample_sd(prop));
print('Variance (sample) of property values', col.aggregate_sample_var(prop));
print('Std dev (total) of property values', col.aggregate_total_sd(prop));
print('Variance (total) of property values', col.aggregate_total_var(prop));
print('Summary stats of property values', col.aggregate_stats(prop));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID';
print('List of property values (string)', col.aggregate_array(propString));
print('Min of property values (string)', col.aggregate_min(propString));
print('Max of property values (string)', col.aggregate_max(propString));
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterBounds(
ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print('List of property values:', col.aggregate_array(prop).getInfo())
print('Count of property values:', col.aggregate_count(prop).getInfo())
print('Count of distinct property values:',
col.aggregate_count_distinct(prop).getInfo())
print('First collection element property value:',
col.aggregate_first(prop).getInfo())
print('Histogram of property values:')
pprint(col.aggregate_histogram(prop).getInfo())
print('Min of property values:', col.aggregate_min(prop).getInfo())
print('Max of property values:', col.aggregate_max(prop).getInfo())
# The following methods are applicable to numerical properties only.
print('Mean of property values:', col.aggregate_mean(prop).getInfo())
print('Sum of property values:', col.aggregate_sum(prop).getInfo())
print('Product of property values:', col.aggregate_product(prop).getInfo())
print('Std dev (sample) of property values:',
col.aggregate_sample_sd(prop).getInfo())
print('Variance (sample) of property values:',
col.aggregate_sample_var(prop).getInfo())
print('Std dev (total) of property values:',
col.aggregate_total_sd(prop).getInfo())
print('Variance (total) of property values:',
col.aggregate_total_var(prop).getInfo())
print('Summary stats of property values:')
pprint(col.aggregate_stats(prop).getInfo())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print('List of property values (string):',
col.aggregate_array(prop_string).getInfo())
print('Min of property values (string):',
col.aggregate_min(prop_string).getInfo())
print('Max of property values (string):',
col.aggregate_max(prop_string).getInfo())
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003eCalculates summary statistics (sum, min, max, mean, standard deviation, and variance) for a specified property across all images within an ImageCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts an ImageCollection and a property name as input and returns a dictionary containing the calculated statistics.\u003c/p\u003e\n"],["\u003cp\u003eOffers separate functions for calculating individual statistics (e.g., \u003ccode\u003eaggregate_mean\u003c/code\u003e, \u003ccode\u003eaggregate_min\u003c/code\u003e) or a comprehensive summary using \u003ccode\u003eaggregate_stats\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eHandles both numerical and string properties, with min/max for strings based on alphanumeric order.\u003c/p\u003e\n"],["\u003cp\u003eCan be used with Earth Engine client libraries in JavaScript and Python.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.aggregate_stats\n\nAggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------|------------|\n| ImageCollection.aggregate_stats`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Lansat 8 TOA image collection for a specific year and location.\nvar col = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\")\n .filterBounds(ee.Geometry.Point([-122.073, 37.188]))\n .filterDate('2018', '2019');\n\n// An image property of interest, percent cloud cover in this case.\nvar prop = 'CLOUD_COVER';\n\n// Use ee.ImageCollection.aggregate_* functions to fetch information about\n// values of a selected property across all images in the collection. For\n// example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values', col.aggregate_array(prop));\nprint('Count of property values', col.aggregate_count(prop));\nprint('Count of distinct property values', col.aggregate_count_distinct(prop));\nprint('First collection element property value', col.aggregate_first(prop));\nprint('Histogram of property values', col.aggregate_histogram(prop));\nprint('Min of property values', col.aggregate_min(prop));\nprint('Max of property values', col.aggregate_max(prop));\n\n// The following methods are applicable to numerical properties only.\nprint('Mean of property values', col.aggregate_mean(prop));\nprint('Sum of property values', col.aggregate_sum(prop));\nprint('Product of property values', col.aggregate_product(prop));\nprint('Std dev (sample) of property values', col.aggregate_sample_sd(prop));\nprint('Variance (sample) of property values', col.aggregate_sample_var(prop));\nprint('Std dev (total) of property values', col.aggregate_total_sd(prop));\nprint('Variance (total) of property values', col.aggregate_total_var(prop));\nprint('Summary stats of property values', col.aggregate_stats(prop));\n\n// Note that if the property is formatted as a string, min and max will\n// respectively return the first and last values according to alphanumeric\n// order of the property values.\nvar propString = 'LANDSAT_SCENE_ID';\nprint('List of property values (string)', col.aggregate_array(propString));\nprint('Min of property values (string)', col.aggregate_min(propString));\nprint('Max of property values (string)', col.aggregate_max(propString));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# A Lansat 8 TOA image collection for a specific year and location.\ncol = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\").filterBounds(\n ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')\n\n# An image property of interest, percent cloud cover in this case.\nprop = 'CLOUD_COVER'\n\n# Use ee.ImageCollection.aggregate_* functions to fetch information about\n# values of a selected property across all images in the collection. For\n# example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values:', col.aggregate_array(prop).getInfo())\nprint('Count of property values:', col.aggregate_count(prop).getInfo())\nprint('Count of distinct property values:',\n col.aggregate_count_distinct(prop).getInfo())\nprint('First collection element property value:',\n col.aggregate_first(prop).getInfo())\nprint('Histogram of property values:')\npprint(col.aggregate_histogram(prop).getInfo())\nprint('Min of property values:', col.aggregate_min(prop).getInfo())\nprint('Max of property values:', col.aggregate_max(prop).getInfo())\n\n# The following methods are applicable to numerical properties only.\nprint('Mean of property values:', col.aggregate_mean(prop).getInfo())\nprint('Sum of property values:', col.aggregate_sum(prop).getInfo())\nprint('Product of property values:', col.aggregate_product(prop).getInfo())\nprint('Std dev (sample) of property values:',\n col.aggregate_sample_sd(prop).getInfo())\nprint('Variance (sample) of property values:',\n col.aggregate_sample_var(prop).getInfo())\nprint('Std dev (total) of property values:',\n col.aggregate_total_sd(prop).getInfo())\nprint('Variance (total) of property values:',\n col.aggregate_total_var(prop).getInfo())\nprint('Summary stats of property values:')\npprint(col.aggregate_stats(prop).getInfo())\n\n# Note that if the property is formatted as a string, min and max will\n# respectively return the first and last values according to alphanumeric\n# order of the property values.\nprop_string = 'LANDSAT_SCENE_ID'\nprint('List of property values (string):',\n col.aggregate_array(prop_string).getInfo())\nprint('Min of property values (string):',\n col.aggregate_min(prop_string).getInfo())\nprint('Max of property values (string):',\n col.aggregate_max(prop_string).getInfo())\n```"]]