Объявление : Все некоммерческие проекты, зарегистрированные для использования Earth Engine до
15 апреля 2025 года, должны
подтвердить право на некоммерческое использование для сохранения доступа. Если вы не подтвердите право до 26 сентября 2025 года, ваш доступ может быть приостановлен.
ee.ImageCollection.fromImages
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Возвращает коллекцию изображений, содержащую заданные изображения.
| Использование | Возврат | ee.ImageCollection.fromImages(images) | Коллекция изображений |
| Аргумент | Тип | Подробности | images | Список | Изображения для включения в коллекцию. |
Примеры
Редактор кода (JavaScript)
// A series of images.
var img1 = ee.Image(0);
var img2 = ee.Image(1);
var img3 = ee.Image(2);
// Convert the list of images into an image collection.
var col = ee.ImageCollection.fromImages([img1, img2, img3]);
print('Collection from list of images', col);
// The ee.ImageCollection.fromImages function is intended to coerce the image
// list to a collection when the list is an ambiguous, computed object fetched
// from the properties of a server-side object. For instance, a list
// of images retrieved from a ee.Feature property. Here, we set an image
// list as a property of a feature, retrieve it, and convert it to
// a collection. Notice that the ee.ImageCollection constructor fails to coerce
// the image list to a collection, but ee.ImageCollection.fromImages does.
var feature = ee.Feature(null).set('img_list', [img1, img2, img3]);
var ambiguousImgList = feature.get('img_list');
print('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));
print('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));
// A common use case is coercing an image list from a saveAll join to a
// image collection, like in this example of building a collection of mean
// annual NDVI images from a MODIS collection.
var modisCol = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(function(img) {return img.set('year', img.date().get('year'))});
var distinctYearCol = modisCol.distinct('year');
var joinedCol = ee.Join.saveAll('img_list').apply({
primary: distinctYearCol,
secondary: modisCol,
condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})
});
var annualNdviMean = joinedCol.map(function(img) {
return ee.ImageCollection.fromImages(img.get('img_list')).mean()
.copyProperties(img, ['year']);
});
print('Mean annual NDVI collection', annualNdviMean); Настройка Python
Информацию об API Python и использовании geemap для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap
Colab (Python)
# A series of images.
img1 = ee.Image(0)
img2 = ee.Image(1)
img3 = ee.Image(2)
# Convert the list of images into an image collection.
col = ee.ImageCollection.fromImages([img1, img2, img3])
print('Collection from list of images:', col.getInfo())
# The ee.ImageCollection.fromImages function is intended to coerce the image
# list to a collection when the list is an ambiguous, computed object fetched
# from the properties of a server-side object. For instance, a list
# of images retrieved from a ee.Feature property. Here, we set an image
# list as a property of a feature, retrieve it, and convert it to
# a collection. Notice that the ee.ImageCollection constructor fails to coerce
# the image list to a collection, but ee.ImageCollection.fromImages does.
feature = ee.Feature(None).set('img_list', [img1, img2, img3])
ambiguous_img_list = feature.get('img_list')
print(
'Coerced to collection:',
ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),
)
print(
'NOT coerced to collection:',
ee.ImageCollection(ambiguous_img_list).getInfo(),
)
# A common use case is coercing an image list from a saveAll join to a
# image collection, like in this example of building a collection of mean
# annual NDVI images from a MODIS collection.
modis_col = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(lambda img: img.set('year', img.date().get('year')))
)
distinct_year_col = modis_col.distinct('year')
joined_col = ee.Join.saveAll('img_list').apply(
primary=distinct_year_col,
secondary=modis_col,
condition=ee.Filter.equals(leftField='year', rightField='year'),
)
annual_ndvi_mean = joined_col.map(
lambda img: ee.ImageCollection.fromImages(img.get('img_list'))
.mean()
.copyProperties(img, ['year'])
)
print('Mean annual NDVI collection:', annual_ndvi_mean.getInfo()),Возвращает коллекцию изображений, содержащую заданные изображения.
| Использование | Возврат | ee.ImageCollection.fromImages(images) | Коллекция изображений |
| Аргумент | Тип | Подробности | images | Список | Изображения для включения в коллекцию. |
Примеры
Редактор кода (JavaScript)
// A series of images.
var img1 = ee.Image(0);
var img2 = ee.Image(1);
var img3 = ee.Image(2);
// Convert the list of images into an image collection.
var col = ee.ImageCollection.fromImages([img1, img2, img3]);
print('Collection from list of images', col);
// The ee.ImageCollection.fromImages function is intended to coerce the image
// list to a collection when the list is an ambiguous, computed object fetched
// from the properties of a server-side object. For instance, a list
// of images retrieved from a ee.Feature property. Here, we set an image
// list as a property of a feature, retrieve it, and convert it to
// a collection. Notice that the ee.ImageCollection constructor fails to coerce
// the image list to a collection, but ee.ImageCollection.fromImages does.
var feature = ee.Feature(null).set('img_list', [img1, img2, img3]);
var ambiguousImgList = feature.get('img_list');
print('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));
print('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));
// A common use case is coercing an image list from a saveAll join to a
// image collection, like in this example of building a collection of mean
// annual NDVI images from a MODIS collection.
var modisCol = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(function(img) {return img.set('year', img.date().get('year'))});
var distinctYearCol = modisCol.distinct('year');
var joinedCol = ee.Join.saveAll('img_list').apply({
primary: distinctYearCol,
secondary: modisCol,
condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})
});
var annualNdviMean = joinedCol.map(function(img) {
return ee.ImageCollection.fromImages(img.get('img_list')).mean()
.copyProperties(img, ['year']);
});
print('Mean annual NDVI collection', annualNdviMean); Настройка Python
Информацию об API Python и использовании geemap для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap
Colab (Python)
# A series of images.
img1 = ee.Image(0)
img2 = ee.Image(1)
img3 = ee.Image(2)
# Convert the list of images into an image collection.
col = ee.ImageCollection.fromImages([img1, img2, img3])
print('Collection from list of images:', col.getInfo())
# The ee.ImageCollection.fromImages function is intended to coerce the image
# list to a collection when the list is an ambiguous, computed object fetched
# from the properties of a server-side object. For instance, a list
# of images retrieved from a ee.Feature property. Here, we set an image
# list as a property of a feature, retrieve it, and convert it to
# a collection. Notice that the ee.ImageCollection constructor fails to coerce
# the image list to a collection, but ee.ImageCollection.fromImages does.
feature = ee.Feature(None).set('img_list', [img1, img2, img3])
ambiguous_img_list = feature.get('img_list')
print(
'Coerced to collection:',
ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),
)
print(
'NOT coerced to collection:',
ee.ImageCollection(ambiguous_img_list).getInfo(),
)
# A common use case is coercing an image list from a saveAll join to a
# image collection, like in this example of building a collection of mean
# annual NDVI images from a MODIS collection.
modis_col = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(lambda img: img.set('year', img.date().get('year')))
)
distinct_year_col = modis_col.distinct('year')
joined_col = ee.Join.saveAll('img_list').apply(
primary=distinct_year_col,
secondary=modis_col,
condition=ee.Filter.equals(leftField='year', rightField='year'),
)
annual_ndvi_mean = joined_col.map(
lambda img: ee.ImageCollection.fromImages(img.get('img_list'))
.mean()
.copyProperties(img, ['year'])
)
print('Mean annual NDVI collection:', annual_ndvi_mean.getInfo())
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-24 UTC.
[null,null,["Последнее обновление: 2025-07-24 UTC."],[],["`ee.ImageCollection.fromImages(images)` converts a list of images into an ImageCollection. This function is crucial for handling ambiguous, computed image lists, like those retrieved from server-side object properties. It successfully coerces image lists into collections, unlike the standard `ee.ImageCollection` constructor. A common use case is processing lists generated by `ee.Join.saveAll`, demonstrated by building a collection of mean annual NDVI images from MODIS data, efficiently grouping images and calculating yearly averages.\n"]]