ee.ImageCollection.getRegion

แสดงผลอาร์เรย์ของค่าสำหรับแต่ละทูเพิล [pixel, band, image] ใน ImageCollection เอาต์พุตประกอบด้วยแถวของรหัส ลองจิจูด ละติจูด เวลา และทุกแบนด์สำหรับแต่ละรูปภาพที่ตัดกับแต่ละพิกเซลในภูมิภาคที่กำหนด การพยายามดึงค่ามากกว่า 1048576 ค่าจะทำให้เกิดข้อผิดพลาด

การใช้งานการคืนสินค้า
ImageCollection.getRegion(geometry, scale, crs, crsTransform)รายการ
อาร์กิวเมนต์ประเภทรายละเอียด
ดังนี้ collectionImageCollectionรูปภาพที่จะรวบรวมเพื่อดึงข้อมูล
geometryเรขาคณิตภูมิภาคที่จะดึงข้อมูล
scaleลอย ค่าเริ่มต้น: nullมาตราส่วนที่ระบุเป็นเมตรของโปรเจ็กชันที่จะใช้
crsการคาดการณ์ (ไม่บังคับ)การฉายภาพเพื่อทำงาน หากไม่ระบุ ระบบจะใช้ EPSG:4326 เป็นค่าเริ่มต้น หากระบุเพิ่มเติมจากสเกล ระบบจะปรับขนาดการฉายภาพใหม่เป็นสเกลที่ระบุ
crsTransformรายการ (ค่าเริ่มต้น: null)อาร์เรย์ของค่าการแปลง CRS นี่คือลำดับแถวหลักของการแปลงแอฟฟิน 3x2 ตัวเลือกนี้จะใช้ร่วมกับตัวเลือกการปรับขนาดไม่ได้ และจะแทนที่การเปลี่ยนรูปแบบใดๆ ที่ตั้งค่าไว้แล้วในการฉายภาพที่กำหนด

ตัวอย่าง

โปรแกรมแก้ไขโค้ด (JavaScript)

// A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.Point(-90.70, 34.71))
  .filterDate('2020-07-01', '2020-10-01')
  .select('B[2-4]');
print('Collection', col);

// Define a region to get pixel values for. This is a small rectangle region
// that intersects 2 image pixels at 30-meter scale.
var roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197);

// Display the region of interest overlaid on an image representative. Note
// the ROI intersection with 2 pixels.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.128,
  max: 0.163
};
Map.setCenter(-90.49605, 34.85211, 19);
Map.addLayer(col.first(), visParams, 'Image representative');
Map.addLayer(roi, {color: 'white'}, 'ROI');

// Fetch pixel-level information from all images in the collection for the
// pixels intersecting the ROI.
var pixelInfoBbox = col.getRegion({
  geometry: roi,
  scale: 30
});

// The result is a table (a list of lists) where the first row is column
// labels and subsequent rows are image pixels. Columns contain values for
// the image ID ('system:index'), pixel longitude and latitude, image
// observation time ('system:time_start'), and bands. In this example, note
// that there are 5 images and the region intersects 2 pixels, so n rows
// equals 11 (5 * 2 + 1). All collection images must have the same number of
// bands with the same names.
print('Extracted pixel info', pixelInfoBbox);

// The function accepts all geometry types (e.g., points, lines, polygons).
// Here, a multi-point geometry with two points is used.
var points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]]);
var pixelInfoPoints = col.getRegion({
  geometry: points,
  scale: 30
});
print('Point geometry example', pixelInfoPoints);

การตั้งค่า Python

ดูข้อมูลเกี่ยวกับ Python API และการใช้ geemap เพื่อการพัฒนาแบบอินเทอร์แอกทีฟได้ที่หน้า สภาพแวดล้อม Python

import ee
import geemap.core as geemap

Colab (Python)

# A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.Point(-90.70, 34.71))
    .filterDate('2020-07-01', '2020-10-01')
    .select('B[2-4]')
)
display('Collection', col)

# Define a region to get pixel values for. This is a small rectangle region
# that intersects 2 image pixels at 30-meter scale.
roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197)

# Display the region of interest overlaid on an image representative. Note
# the ROI intersection with 2 pixels.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.128, 'max': 0.163}
m = geemap.Map()
m.set_center(-90.49605, 34.85211, 19)
m.add_layer(col.first(), vis_params, 'Image representative')
m.add_layer(roi, {'color': 'white'}, 'ROI')
display(m)

# Fetch pixel-level information from all images in the collection for the
# pixels intersecting the ROI.
pixel_info_bbox = col.getRegion(geometry=roi, scale=30)

# The result is a table (a list of lists) where the first row is column
# labels and subsequent rows are image pixels. Columns contain values for
# the image ID ('system:index'), pixel longitude and latitude, image
# observation time ('system:time_start'), and bands. In this example, note
# that there are 5 images and the region intersects 2 pixels, so n rows
# equals 11 (5 * 2 + 1). All collection images must have the same number of
# bands with the same names.
display('Extracted pixel info', pixel_info_bbox)

# The function accepts all geometry types (e.g., points, lines, polygons).
# Here, a multi-point geometry with two points is used.
points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]])
pixel_info_points = col.getRegion(geometry=points, scale=30)
display('Point geometry example', pixel_info_points)